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COMPARATIVE ANALYSIS IN STUDY  
OF CLASSICAL DIFFERENTIAL MAXWELL 

SYSTEM FOR THE SLOW-GUIDED STRUCTURES 
 

Peter VOROBIYENKO, Irina DMITRIEVA∗ 

 
Abstract. Two analytical methods in electrodynamics are proposed here 
basing on the mathematical models in terms of the finite dimensional 
systems of PDEs (partial differential equations). Both algorithms reduce the 
original matrix problem to the general wave equation regarding all 
unknown scalar components of electromagnetic field vector intensities. This 
wave PDE is solved explicitly in the unified manner irrespectively of 
concrete boundary value problem statement. Detailed analysis of 
restrictions in the framework of classical Maxwell theory is suggested as 
well using both aforesaid analytic techniques in the class of not generalized 
functions. Efficiency of those research trends is shown in the case of slow-
guided structures dealing with electromagnetic wave propagation in the 
Cartesian coordinate system. 

Keywords and phrases: classical Maxwell theory, electromagnetic wave 
propagation, general wave equation, explicit solution.  

1. Introduction 

In spite of various numerical methods and subroutines in 
electrodynamics [1], new analytic procedures remain also required on 
solution of modern industrial problems dealing with electromagnetic field 
theory [2]. Rather often, it even happens that desire for more accuracy in 
approximate computation, in reality gives wrong result having nothing in 
common with the existing physical or engineering process [1], [2]. 
Moreover, sometimes the lack of appropriate exact mathematical algorithm 
leads to severe contingencies of the original problem statement. Thus in 
[3], the classical differential Maxwell equations for a homogeneous 
isotropic media in the Cartesian coordinate system were roughly reduced to 
the degenerate version with vanishing current (charges) ),,,( tzyxii =  and 
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charge density ).,,,( tzyxρ=ρ  Though the authors in [3] had a claim on the 
analytic research of electromagnetic wave propagation in the slow-guided 
structures, their suggested approach not only narrowed mathematical and 
physical formulation, but also completely spoiled expected results.  

It is one of several reasons why the goal of the present paper consists 
in the presentation of two explicit techniques concerning diagonalization of 
the finite dimensional square systems of PDEs with piecewise constant 
coefficients and invertible terms commutative in pairs [4], [5]. 
Diagonalization means here reduction of the initial matrix problem to the 
equivalent union of scalar equations where each of them depends on the 
only one component of the unknown vector field function. Actually, the 
latter is present implicitly in the aforesaid original system of PDEs.  

Returning to the above mentioned set of scalar equations, it is easy to 
understand that their solving is simpler in comparison with matrix form. 
Finally, all found solutions uniquely determine the required vector field 
function. Besides, mathematical modeling of engineering processes using 
relevant boundary value problems is better to do for scalars avoiding 
vectors whose study usually remains more complicated and even vague.  

Closing this section, it should be noted that since the topic of given 
article deals with the analytical methods applicable to technical 
electrodynamics, in further results we are going to show as all virtues of 
the suggested here investigation, as all drawbacks of the ungrounded trend 
from [3].  

2. Preliminaries 

Let the classical differential Maxwell equations in the Cartesian 
coordinate system and for isotropic homogeneous linear media be given  
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In (1): ),,,(,, tzyxHEHE =  are the unknown electromagnetic field 
vector intensities with scalar components );3,1(),,,,(,, == itzyxHEHE iiii  

),,,(,, tzyxBDBD =  describe the induction of electric and magnetic field 
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respectively; ),,,( tzyxii =  and ),,,( tzyxρ=ρ  determine the current 
(charges) and charge density; ,σ  0,0 00 >ε=ε>μ=μ  denote specific 
conductivity, relative magnetic and electric permeability of the medium; 
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)3,1;2,1(),,,( === iktzyxFF kiki  are the corresponding scalar 
components of electromagnetic field vector intensities 

),,,,(,, 2121 tzyxFFFF =  21, FF ., HE=  
 Diagonalization of (1) will be done later using two new analytical 

methods [4], [5]. The first one [4] is the operator generalization of 
algebraic Gauss method [6]. The second procedure [5] suggests the inverse 
matrix operator construction. Both of them effectively reduce (1) to the 
general wave PDE regarding all unknown scalar components of the 
electromagnetic field vector intensities.  

Practically, system (1) was base in [3] investigating electromagnetic 
wave propagation in the slow-guided structures. Tthough results of [3] 
aspired to strictly analytical level of study, unfortunately, system (1) was 
considered in [3] only with hard constraints of 0,0 =ρ=i  and .∞=σ  
Additionally, it was assumed in [3] that time change of electromagnetic 
field obeyed the law ),exp( tiω  i. e. ),exp(, tiHE ω≈ where 1−=i  and ω  
is the vibration frequency.  

Perhaps, such breaking of the original physical and mathematical 
statement was connected with definition of the slow-guided system [3] as 
the metallic one, not having either magnetics or dielectrics, or charges 

0,0 =ρ=i  inside. Perfect conductivity ∞=σ and )exp(, tiHE ω≈  are 
also assumed. 

The above mentioned restrictions, including influence of 0∂  on the 
electromagnetic field vector intensities, naturally take (1) to the following 
peculiar form  
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Even such cutoff version (2) was considered without longitudinal  
or transverse waves in [3]. Analytical explicit solution was not also 
proposed [3].  

Nevertheless, the aforesaid methods of [4] and [5] will be shown in 
the next section for (2) as well, but only when complete exact study of (1) 
is done.  

3. Results  

Returning to (1), after obvious transformations, we write this system 
in the equivalent way  
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The next step concerns diagonalization of the first pair of equations 
from (3). The main aim here is obtaining of the general wave PDE 
regarding all scalar components of electromagnetic field vector intensities. 

Since the subsystem of those two equations is homogeneous, method 
of inverse matrix operator construction [5] as the essential generalization 
of algebraic approach [6], appears improper. It is well known [6] that 
homogeneous algebraic square systems have the unique and only zero 
solution when their determinants equal zero. The last fact completely 
excludes inverse matrix operator construction whose existence is possible 
only in the case of nonzero system determinant [5]. That is why 
diagonalization of the first subsystem from (3) is done by the operator 
generalization of Gauss method [4]. Namely, application of operators 0∂μ  
and rot  to the first and the second equations of the mentioned subsystem 
respectively, after term-by-term addition of those both transformed 
equations, leads to the equivalent system regarding (3)  

  
⎪⎩

⎪
⎨
⎧

=∂μ+

=σ+∂ε∂μ+

.0

,0))((

0

00

HE

E

rot

rot2

  (4) 

The first equation in (4) depends already on the only one electric field 
vector intensity .E   
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The next action of operators )rot(−  and )rot( 2
0

2 ∂+  on the first and 
the second equations in (4) with the further term-by-term addition of those 
two transformed ones, again gives the equivalent system  

  
⎪⎩

⎪
⎨
⎧

=∂+∂μ
=∂+

,0)rot(
,0)rot(

2
0

2
0

2
0

2

H
E   (5) 

where  

  ).( 00
2
0 σ+∂ε∂μ=∂   (6)  

Now, the second equation in (5) is dependent on the only one 
magnetic field vector intensity .H  It is obvious that (5) represents 
diagonalization of (1) at the electromagnetic field vector level.  

Obtaining of the general wave equation regarding all scalar 
components of ,E  H  demands expressing of (6) in coordinates basing on 
the identity of the classical field theory [7]  
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i is the Laplace operator.  (7) 

Owing to the third and fourth equations from (3), use of (7) 
substantially simplifies (5) giving the following  
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The main assumption here is the specification of scalar function 
),,,( tzyxρ=ρ  making Ediv  as given.  

Influence of the inverse operator ∫=∂− td1
0  upon the second equation 

from (8) whose right part is the zero vector, creates again the equivalent 
system  
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In (9), vector function ),,( zyxg  is the integration result determined 
by the physical viewpoint of the concrete engineering problem statement. 
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It is clear that (9) can be written as the common vector wave PDE 
regarding field intensities E  and H  
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Considering (10) in the equivalent coordinate form we have the 
sought-for general scalar wave PDE  

  =Δ−∂ kiF)( 2
0 ,kif  ,)3,1;2,1( == ik   (11)  

where  

;}{,}{ 3
12

3
11 == == iiiiii HFEF  ,1

1 ρ∂
ε

−= iif  ;)3,1(),,,(1
2 =

μ
= izyxgf ii   

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂
∂

=
),,,(
),,,(
),,,(

3

2

1

tzyx
tzyx
tzyx

ρ
ρ
ρ

ρgrad , 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

),,(
),,(
),,(

3

2

1

zyxg
zyxg
zyxg

g .  (12) 

Solution of (11), (12) is done similarly to [8], regardless of boundary 
conditions and using integral transform method by all spatial 
variables ),,( zyx  [7]. Supported by the technique of [8], the general wave 
PDE (11), (12) becomes the second order ODE (ordinary differential 
equation)  
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In (13), all symbols are of the same meaning as in the following 
formulae from [8]  
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where ;,, 321 xzxyxx ===  the i  th integral transform kernel by the 
argument ix  with parameter ip  is written like that ),,( iiii pxKK =  and the 
direct integral transform is determined by the expression 
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contour ).3,1(, =iLi  Those points can be either finite or infinite real or 
complex as well [7].  

Consideration of integral transforms influence on FΔ  by 
)},3,1(,{),,( == ixzyx i  allows uniformly presenting the general scalar 

components of electromagnetic field vector intensities by the expression 
).);3,1(,(),,,( tixFtzyxFF i ===  Then, application of the i th integral 
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=

∂=Δ
3

1

2

i
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In (13), (14) and everywhere below, either the right-hand or the left-hand 
subscript “tr” means conversion to the corresponding transform. Though in 
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(15), ,3,1,, =ν li  but l,ν  take only two values from those three because of 
two last inequalities in (15). In addition, the second summand triii Fp )(η  
from the right side of (14) has the factor )( ii pη  dependent only on the i  th 
integral transform parameter .ip  The mentioned factor is generated by the 

operation ,2
ii K∂  )3,1( =i  in (14). At last, (16) describes the “incomplete” i  

th transform of F  by variable ,ix  and derives “complete” transform (17) 

for F  by all spatial arguments ).3,1,(),,( == ixzyx i  In (18), conditions for 

l,ν  remain the same as for ,is  )3,1( =i  from (15), and expression under the 
sign of ∑  in the second formula is similar to the last part of the first 
equality from (17). Namely, 
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Generally, accurate within change of trtr fF ,  to ,, kitrkitr fF  all symbols 
in (13) are of the same meaning as in (14)-(18). Inherent difference takes 
place only in the last expression from (18), where  
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is sought by the method of variation of constants [9], where unknown 
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In (20), the unknown functions )(2,1 pC∗  are found basing on the 
corresponding transformed initial conditions of the specific boundary value 
problem. The latter is responsible for the mathematical simulation of the 
studied physical or engineering process.  

It should be noted, that in (19), (20)  
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Substitution of (20) for (19) gives the required general explicit 
solution of (13)  
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where )2,1(, =ω jj and D  are determined in (21), (22). Direct check 
easily confirms that (23) undoubtedly represents the general solution  
of (13).  

The further conversion to the starting wave inverse transform 
regarding (23) gives function  
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initially used, and kitr F  is from (23). Hence, explicit expression (24) is the 
required solution of the general scalar wave PDE (11), (12) and describes 
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all scalar components of electromagnetic field vector intensities. Formulae 
(23), (24) can be effectively used when specification of the mathematical 
modeling for engineering problem statement is done and appropriate exact 
analytic result is demanded.  

Since the complete analysis and explicit solution of (1) in the class of 
not generalized functions are finished, and the first step of this paper’s goal 
is attained, the effective investigation of (2) from [3] can be proposed as 
well.  

System (2) is homogeneous. As it was recently explained for the first 
subsystem from (3), diagonalization of (2) should be done using operator 
generalization of algebraic Gauss method [4]. Operator application of rot  
and )( 0ωμ−i  to the first and second equations of (2) respectively, with the 
term-by-term addition of both transformed equations, reduces original 
system to equivalent  
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In (25), the first equation already depends on the only one electric 
field vector intensity E . Then, influences of operators )rot(−  and 
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2 ωμε−  on the first and second equations in (25), with further term-
by-term addition of both transformed equations, leads again to the 
equivalent system 
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In (26), now the second equation depends on the only magnetic field 
vector intensity .H  Therefore, system (26) closes diagonalization of (2) in 
terms of vectors. The next stage is writing of (26) in the coordinate (scalar) 
form using property (7). Obtaining (2), authors of [3] put 0,0 =ρ=i  in 
the classical version (1). As the result, (7) degenerates into  
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dependent on all scalar components of electromagnetic field vector 
intensities. Basing on (28), the required general scalar wave PDE for (2) is 
written  

  ,0)( 2
00 =ωμε+Δ kiF ).3,1(,, 21 === iHFEF iiii   (29)  

Equation (29) is homogeneous, and partial differential operator in its 
left part depends only on the spatial variables ),,( zyx  not taking into 
account temporal parameter t , which is natural corollary of the aforesaid 
ill-founded contingencies [3] on the classical Maxwell system (1). The last 
fact is the most substantial rough infringement of the original problem 
statement [3], which not only makes senseless further solution of (29), but 
in general, deprives (29) any right to be called wave. Even if research of 
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and all unknown scalar components of electromagnetic field vector 
intensities are described by the preceding common formula (24), where the 
appropriate transforms are given by (31).  

Closing analysis of basic results in [3], it is impossible not to engage 
the authors’ idea concerning solving of (1) at the level of electromagnetic 
field scalar U and vector V potentials. Those functions are introduced by 
the formulae  
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Further proposed approaches and calculation are done even without 
aforesaid restrictions [3] for the original Maxwell system (1), which is 
degenerated to (2) [3]. Hence, basing on (32) let all possible variants of 
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electromagnetic field analytic exact research be considered. The first 
direction is substitution of (32) for (1)≡ (3). It gives the equivalent system  
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Since ,0≡Ugradrot  ,0div ≡Vrot  Δ=Ugraddiv  [7], and operator 
commutativity in pairs ,00 ∂=∂ rotrot  00 divdiv ∂=∂  is clear, owing to (6), 
(7) system (33) becomes its own equivalent  

  
⎪⎩

⎪
⎨
⎧

=Δ−+∂++∂

−=∂+Δ

.0)div()(

,1div

2
00

0

VU

VU

gradgradσεμ

ρ
ε   (34)  

It is easy to find that not all operators in (34) commute in pairs. 
That’s why diagonalization of (34) and its proven reduction to the general 
wave PDE regarding electromagnetic field potentials is unattainable.  

The next variant deals with the direct substitution of (32) for the final 
diagonalization result of (1), – system (9)    
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It is obvious that the second equation in (35) depends now on the 
only one vector potential – .V  It is left now obtaining equation dependent 
on the only scalar potential .U  Application of rot on the first 
correspondence in (35), and of ),( 0−∂  – on the second one, after the term-
by-term addition of both transformed equations basing on ,00 ∂=∂ rotrot  
leads to the equivalent system  
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gradrotgradrot
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It is easy to notice, that both parts of the second equation in (36)  
are identical zeroes because of ,0≡Ugradrot  0≡ρgradrot [7] and 

.0),,(0 ≡∂ zyxg  Therefore, (36) consists now of only one equation 

  ),,,()( 2
0 zyxgV =Δ−∂ rot   (37) 

whose structure is more complicated in comparison with the general wave 
PDE (10)-(13). Even with the given electric field intensity E  in (32), the 
search of unknown scalar potential U  from (32) with additional condition 
(37), appears unattainable in spite of detailed study of (37) in scalar form 
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  (38)  

and further complete diagonalization of (38). Since (38) is inhomogeneous, 
the indicated procedure can be done by the inverse matrix operator 
construction [5]. Remembering that uniqueness of solution for 
inhomogeneous algebraic system exists only with its nonzero determinant 
[6], we base on the operator generalization of mentioned method [5] and 
compute the determinant for (38):  
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⎡
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∂∂−
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The last expression proves the lack of unique solution for (38) and 
therefore, impossibility of potentials’ VU ,  explicit construction. 

The last opportunity of exact retrieval of unknown potentials VU ,  
remains. It implies study of (32) as corresponding system with respect to 
unknown VU ,  and given electromagnetic field vector intensities HE,   
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⎪
⎨
⎧

−=∂+

=

.

,

0 EVU

HV

grad

rot μ
  (39)  

System (39) is inhomogeneous because HE,  are known here. Hence, 
as in the preceding case, (39) has the unique solution with its nonzero 
determinant. Unfortunately, even for (39), the explicit seek of the field 
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potentials VU ,  is impossible because determinant of this system is 
identical zero  

,0
0

det)39det(
0
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⎦

⎤
⎢
⎣

⎡
∂

=
grad

rot
 

basing on 0gradrot ≡  [7].  
Analysis of all obtained here results confirms appropriateness and 

efficiency of those two proposed exact methods [4], [5] used for explicit 
electromagnetic field study. Ungrounded restrictions concerning “rough” 
physical / mathematical simplification of the original fundamental 
statement break connection between investigations of real engineering 
phenomena and correct analytic solution of corresponding applied 
problems [3].  

Finally, further support of procedures [4], [5] evokes comparison of 
[5] with its application to (1) when the charge density ),,,( tzyxρ=ρ  is a 
fortiori indeterminate. Then the first equation from (5) basing on (7) can be 
written in scalar form  
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  (40)  

System (40) looks almost like analogous result in [5], accurate within 
zero right sides of equations and change of operators ijA

~
 into 

  ),;3,2;2,1(,22
0 jijiA iij ≠==∂+Δ−∂=   (41)  

where 2
0∂  is denoted by (6). Operators );3,2;2,1(, jijiB jiij ≠==∂∂=  

are here the same as in [5]. 
Application of unifying technique [4] to homogeneous operator 

systems, takes (41) to the general wave PDE with respect to all scalar 
components of electric field vector intensity E   

  ).3,1(0)( 2
0

2
0 ==Δ−∂∂ iEi   (42)  

Solution of (42) is done similarly to (10) using the integral transform 
method [7]. Introduction of new function  

  ,),,,( 2
0 iii Etzyx ∂=Φ=Φ  )3,1( =i   (43)  
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reduces (42) to the following second-order equation  

  ).3,1(0)( 2
0 ==ΦΔ−∂ ii   (44) 

Instead of the original fourth-order one, we get (44) of less order. 
Then, in exactly the same way as in [8], at first (44) is solved and function 

)3,1( =Φ ii  is found. After that, (43) is considered as the particular case 
of (44) with ,0≡Δ  but with already given nonvanishing function 

)3,1( =Φ ii  and unknown .)3,1( =iEi  Analytical study of (43), identically 
to [8], gives all scalar components of the desired electric field vector 
intensity .E  Here, the difference consists only in 2

0∂  from (6) and 

operators ,)()(
~

0
2

0
2
0 σ+∂ε+σμ+∂εμ=∂ ∗∗ rr aaaa λ±∂=∂∗ 00  in [8].  

By analogy to (42), the general wave PDE for H is got and solved 
also explicitly. 

4. Conclusions  

Closing the article, it should be noted that the assigned task is 
completely fulfilled.  

Actually, the suggested approach uniting those two analytic operator 
diagonalization methods can be applied to any type of the finite 
dimensional square system of operator equations with piecewise constant 
coefficients and invertible terms commutative in pairs.  

Both proposed here methods act in the class of not generalized 
functions and irrespectively of the specific boundary value problem 
statement. Those two virtues simplify as analysis of the studied 
engineering or physical process, as its mathematical modeling and further 
explicit solution.  
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