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NEWTONIAN AND LAGRANGIAN MECHANICS 
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Abstract. We define the economic correspondents for kinetic and potential 
energy of production and mutually coherent Newtonian and Lagrangian 
frameworks for modeling production. The neoclassical theory is shown to 
correspond to zero-force situation in the introduced framework where the 
potential energy of the production system is in its minimum. This explains 
why it has been difficult to explain real world production dynamics by using 
the neoclassical framework. Our framework adds dynamics in the 
neoclassical theory and includes in it cases like firms’ permanent growth, 
business cycles, and bankruptcies. These are impossible events in the 
neoclassical framework that assumes firms to produce at constant positive 
profit maximizing flow of production. JEL: D21, C62, O12. 
 

Keywords: Newtonian and Lagrangian economics, Economic dynamics, 
Kinetic and potential energy of a production system.  

 
     

1. Introduction 
 

Neoclassical economics was born when William Stanley Jevons, 
Alfred Marshall, and Leon Walras, among others, started to use the 
formalism of classical mechanics in modeling the purposeful behavior of 
human beings, [1]. The latter was suggested by Adam Smith as the basis 
for the science. The neoclassical framework combines these two ways of 
thinking and it is based on the concept of static equilibrium. In spite of 
numerous attempts, the pioneers of the neoclassical theory were not able to 
define the forces acting in economies and the economic energy concepts so 
that the formalism of classical mechanics could have been applied also in 
modeling dynamic economic events. 
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MasColell et al. [2] p. 620 state the problems in the neoclassical 
framework as follows: “A characteristic feature that distinguishes 
economics from other scientific fields is that, for us, the equations of 
equilibrium constitute the center of our discipline. Other sciences, such as 
physics or even ecology, put comparatively more emphasis on 
determination of dynamic laws of change. … The reason, informally 
speaking, is that economists are good (or so we hope) at recognizing a 
state of equilibrium but are poor at predicting precisely how an economy 
in disequilibrium will evolve. Certainly there are intuitive dynamic 
principles: if demand is larger than supply then price will increase, if price 
is larger than marginal cost then production will expand… The difficulty is 
in transforming these informal principles into precise dynamic laws”. 

Although Mirowski [1] is critical for the analogy between economics 
and physics, he admits that the use of the methods of classical mechanics 
was essential for economics to become a respected science. The concept of 
energy was popular among the pioneers of neoclassical economics because 
it unified the modeling principles in physics into a single principle. In these 
works of economics by e.g. Nicholas-Francois Canard, William Stanley 
Jevons, Hermann Gossen, Irwing Fisher, Leon Walras, and Paul 
Samuelson, the concept corresponding to potential energy was utility, and 
that corresponding to kinetic energy was total expenditures of consumers 
(ibid, pp. 223-227).  

Our opinion of these matters coincides with the following views. 
Joseph Schumpeter1: ...”We must not copy out actual arguments but we 
can learn from physics how to build up an exact argument. ... there are 
obviously a set of concepts and procedures which … are of so general a 
character as to be applicable to an indefinite number of different fields. 
The concepts of Potential or Friction of Inertia are of that kind…” Solow 
[3] pp. 330-1: “My impression is that the best and the brightest of the 
profession proceed as if economics is the physics of society. If the project 
of turning economics into a hard science could succeed, then it would 
surely be worth doing”. Walras [4] p. 71: “...the pure theory of economics 
is a science which resembles the physico-mathematical sciences in every 
respect”. 
                                                            

1 In a letter to Edwin Bidwell, Wilson, 19 May 1937, in Harward University Archives, 
Wilson Correspondence, HUG 4878.203. 
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Samuelson [5] p. 355 describes Fisher [6] as “perhaps the best of all 
doctoral dissertations in economics”. Fisher [6] is the first published work 
where the correspondences between physics and economics are explicitly 
defined. Fisher translated the main physical concepts into economics as 
follows: particle = individual, space = commodity, force = marginal 
utility, work = disutility, energy = utility. These correspondents did not 
turn out to be useful for economics, however, which explains the critical 
attitude of [1] on this analogy. In section 4 we alter these definitions, 
however, and show that if defined correctly this analogy solves many 
current problems in economics. 

Mirowski [1] criticizes economists about copying classical mechanics 
and not utilizing 20th century physics. However, economics cannot jump 
into utilizing quantum mechanics before it has been able to apply even the 
simplest principles of modeling dynamic phenomena in physics that still 
work in most macro level events. Because neoclassical economics is based 
on a framework invented in physics, we can project that besides classical 
mechanics also other principles of modeling in physics, like classical 
statistical mechanics and quantum mechanics, have fields of application in 
economics. On the other hand, Lagrangian and Hamiltonian formalisms are 
potential frameworks for modeling in economics too. These principles 
require, however, that a framework for modeling economic phenomena 
analogous to Newtonian mechanics has been defined. 

The type of research described above is currently made under the 
field known as econophysics. Thus econophysics is not dissent thinking in 
economics but rather critical rethinking of the foundations of the 
neoclassical framework. A majority of research in econophysics applies the 
tools developed in classical statistical mechanics in modeling systems 
consisting of various interacting economic units, see e.g. [7]. Thus 
econophysics applies the modern methods in physics developed for 
modeling complex phenomena, as insisted in [1]. The problem in 
econophysics is, however, that a bridge between static equilibrium analysis 
in neoclassical economics and stochastic dynamic models in econophysics 
has not been presented. Our aim here is to fill this gap and to replace the 
informal dynamic principles in the neoclassical framework mentioned 
earlier in [2] by precise dynamic laws. One inspiration for this study was 
the identification of money as the economic correspondence for energy in 
physics, see e.g. [8-10]. We define the kinetic and the potential energy of a 
production system as monetary quantities in a consistent way with these 
authors, and in this way we can define the Lagrangian mechanics of a 
production system.   
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1.1. Motivation 
 

The analogy in methods of modeling in physics and in economics can 
be justified as follows. Economic units have a free will to operate as they 
wish. However, this free will is restricted by the willingness of economic 
units to attain the goals they have set for themselves, which forces them to 
behave consistently with attaining these goals. This kind of behavior can 
be called rational. In Aristotelian physics, particles were thought to have 
an objective or telos to move along a certain path, [11]. Later Newton 
explained the telos of a particle by the forces acting upon it. Hamilton’s 
principle, on the other hand, states that the motion path of a particle 
minimizes its energy. We can thus explain the motion of particles within 
the Aristotelian framework so that they have a “will” (telos) to reach the 
minimum point of their potential energy. 

The above explains why the frameworks for modeling developed in 
physics can be applied in economics too. We can model the behavior of 
economic units so that they are assumed to have a will to reach a certain 
state, like maximal utility or profit (minimum potential energy i.e. 
minimum deviation from the optimal state). Economic units, too, face 
several kinds of interactions like marketing. The Lagrangian and 
Hamiltonian frameworks for modeling are thus analogous with 
neoclassical economics if we assume that economic units are not always in 
their optimum, but due to different kinds of interactions the units tend to 
improve their current state to reach their optimum. This explains why it has 
been difficult to model observed changes and economic growth in the 
neoclassical framework where economic units are assumed to behave in 
their optimal way. In physics, this would correspond to the assumption that 
a particle has reached its minimum state of potential energy where it does 
not “want” to change its state of motion any more.  

The problem in the neoclassical framework can be explained by the 
following example. Let us consider an empty bowl and a marble on its 
edge. If the marble is let loose, it will end in the bottom of the bowl via the 
trajectory that can be solved by using either Newtonian or Lagrangian 
framework. Once the trajectory is solved, we know the position of the 
marble and its direction of motion at every instant of time during the 
motion. If this dynamic phenomenon would be solved by using the 
neoclassical framework, however, we could only say that after some time 
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the marble will be immobile in the bottom of the bowl. Thus by using the 
neoclassical framework we could not forecast whether there is 
overshooting in the adjustment or not, where the marble is and in which 
direction it is moving at every instant of time, and when the marble will 
reach its equilibrium. The neoclassical framework is useless e.g. in 
explaining and forecasting the transformation process of former centrally 
planned economies to market economies. What the neoclassical framework 
can forecast is to say that after roughly 40 years the former “eastern 
countries” have moved from the “centrally planned equilibrium” to the 
“market equilibrium”. This framework does not give any tools to forecast 
or guide this process.  

The neoclassical framework has though been dynamized by applying 
dynamic optimization, see e.g. [12] or [13]. It is shown in [14], however, 
that the static and dynamic neoclassical frameworks are inconsistent with 
each other because they assume different target functions for economic 
units. Thus both these frameworks cannot be accepted simultaneously. Our 
framework here, on the other hand, gives the static neoclassical one as a 
special case and thus these frameworks are consistent. 

According to [11], Aristotelian teleology was applied to humans as 
well. Humans were assumed to have a telos to behave in a rational way. 
Following Newton, we can explain the regularities caused by the 
intentional behavior of economic units by defining the “forces” created by 
economic units that are acting upon economic quantities. In economics, 
however, this kind of framework has not been accepted. Thus economics 
has a long way to go before the science has utilized all the knowledge 
developed in physics for modeling complex phenomena by applying 
mutually coherent principles. 
 

2. Economic concepts corresponding to the physical ones 
 

2.1. Kinematics 
 

We agree with [6] that economic kinematics can be described as the 
position of an economic quantity in a coordinate system and according to 
the movement of the point. The only change we make is to assume that 
there exist factors resisting changes in these quantities, and we model this 
inertia according to physics by defining the inertial “masses” of economic 
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quantities. Thus we model in economics the dynamics of “particles with a 
mass” in different coordinate systems. The kinematics of production 
(consumption) of good i can be expressed as 
                    

𝑄𝑄𝑖𝑖(𝑡𝑡) = 𝑄𝑄𝑖𝑖(𝑡𝑡0) + � 𝑞𝑞𝑖𝑖(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

𝑡𝑡0
,        𝑡𝑡 > 𝑡𝑡0,   

�̇�𝑄𝑖𝑖(𝑡𝑡) = 𝑞𝑞𝑖𝑖(𝑡𝑡),       �̈�𝑄𝑖𝑖(𝑡𝑡) = �̇�𝑞𝑖𝑖(𝑡𝑡),   
 

where 𝑄𝑄𝑖𝑖(𝑡𝑡) (𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡),𝑄𝑄𝑖𝑖(𝑡𝑡0) (𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡) are the accumulated amounts of 
production (consumption) of good i at time moments 𝑡𝑡, 𝑡𝑡0, respectively, 
�̇�𝑄𝑖𝑖(𝑡𝑡) = 𝑞𝑞𝑖𝑖(𝑡𝑡) (𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡/𝑦𝑦)  the momentous flow of accumulated production 
(consumption), and �̈�𝑄𝑖𝑖(𝑡𝑡) = �̇�𝑞𝑖𝑖(𝑡𝑡) (𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡 𝑦𝑦2)⁄  the momentous acceleration 
of accumulated production (consumption) at time moment 𝑡𝑡 . Unit 𝑦𝑦  is 
time, and it can be e.g. a year or a week (compare with the units of speed 
𝑚𝑚/𝑠𝑠 and acceleration 𝑚𝑚/𝑠𝑠2 in physics2), and by s is denoted running time 
during (𝑡𝑡0, 𝑡𝑡). Separate notation q is chosen for the flow of production 
because in economics this is a fundamental quantity while in physics, the 
corresponding fundamental quantity is position or the accumulated length 
of motion of a body. Accumulated production is needed in economics e.g. 
in measuring capital stocks and in modeling learning at work due to work 
experience, and accumulated consumption is needed e.g. in measuring the 
amount of calories a consumer has received by eating.  
 

2.2. The concepts of economic energy 
 

We define the economic correspondents for the two energy concepts 
in physics in a new way, and we show that these definitions are useful in 
modeling economic dynamics. It is essential that the economic 
correspondent for energy has the same characteristics as energy has in 
physics, that is, it is the initiator of motion of the system. Without external 
energy, a physical system that has ended up into its minimum level of 
energy cannot move to a state of higher energy. With these arguments, we 
choose money for the dimension of the concepts of economic energy and 
we measure it in unit3 euro.  

                                                            
2 A system of measurement units for economics is given in [15].   
3 Measurable quantities have a certain dimension (e.g. “length” in physics), but one 

dimension may contain several measurement units (the units of length are e.g. meter, 
kilometer, and inch.) 
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In an economy, by money you can get almost everything and all 
prices are expressed in monetary units. In physics, “price” is usually 
expressed in units of energy. If a physical system moves from one state to 
another, this movement either uses or releases energy unless the two states 
have the same level of energy. Let us suppose a consumer with the 
economic state that contains a yacht. This consumer moves to a state where 
the yacht has been replaced by a car with other things being equal (except 
perhaps cash). This change may have used or released money, or the 
exchange between the yacht and the car has been made without monetary 
transaction in the case their values were equal. 

 
2.2.1. Kinetic energy of production 

 
The kinetic energy of an n-good production system is defined 

analogously as in physics, see e.g. [16] p. 71. Suppose force F is acting 
upon production during displacement 𝑑𝑑𝑸𝑸  in the space of accumulated 
productions of a firm. The instantaneous velocity vector of accumulated 
production is 𝑑𝑑𝑸𝑸 𝑑𝑑𝑡𝑡⁄ = 𝒒𝒒 = (𝑞𝑞1, … , 𝑞𝑞𝑛𝑛)  and the momentum vector is 
𝒑𝒑 = (𝑚𝑚1𝑞𝑞1, … ,𝑚𝑚𝑛𝑛𝑞𝑞𝑛𝑛) , where the inertial “masses” 𝑚𝑚𝑖𝑖  have units 
€ × 𝑦𝑦2 𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑖𝑖2⁄ , 𝑢𝑢 = 1, … ,𝑢𝑢; 𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑖𝑖  is the volume unit for good i and y the 
unit of time. The inertial mass of production represents all factors 
restricting changes in the flow of production, such as rigid technology, 
frictions in adjusting production factors etc. This way all terms 
𝑚𝑚𝑖𝑖𝑞𝑞𝑖𝑖2,∀𝑢𝑢,  have unit €.  

Now, assuming the inertial masses to be constant, the Newtonian 
equation 𝑭𝑭 = 𝑑𝑑𝒑𝒑/𝑑𝑑𝑡𝑡 to hold and noticing that 𝑑𝑑𝑸𝑸 = 𝒒𝒒𝑑𝑑𝑡𝑡, we can write 
                                                         

𝐹𝐹 ∙ 𝑑𝑑𝑸𝑸 =
𝑑𝑑𝒑𝒑
𝑑𝑑𝑡𝑡

∙ 𝑑𝑑𝑸𝑸 = 𝑑𝑑𝒑𝒑 ∙ 𝒒𝒒. 
                                        

Then, because 𝑑𝑑𝒑𝒑 = (𝑚𝑚1𝑑𝑑𝑞𝑞1, … ,𝑚𝑚𝑛𝑛𝑑𝑑𝑞𝑞𝑛𝑛) we get   
                                                  

𝑑𝑑𝒑𝒑 ∙ 𝒒𝒒 = 𝑚𝑚1𝑞𝑞1𝑑𝑑𝑞𝑞1 +∙∙∙ +𝑚𝑚𝑛𝑛𝑞𝑞𝑛𝑛𝑑𝑑𝑞𝑞𝑛𝑛. 
 

Integrating this formula we get the kinetic energy of the production 
system as  

         𝑇𝑇 = ∫𝑭𝑭 ∙ 𝑑𝑑𝑸𝑸 = ∫𝑑𝑑𝒑𝒑 ∙ 𝒒𝒒 = 1
2
∑ 𝑚𝑚𝑖𝑖𝑞𝑞𝑖𝑖2𝑛𝑛
𝑖𝑖=1 =  1

2
∑ 𝑚𝑚𝑖𝑖�̇�𝑄𝑖𝑖2𝑛𝑛
𝑖𝑖=1 .        (1) 
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The kinetic energy of production of good i is thus 
         

                                                𝑇𝑇𝑖𝑖 = 1
2
𝑚𝑚𝑖𝑖�̇�𝑄𝑖𝑖2,                                                     (2) 

 

where �̇�𝑄𝑖𝑖 (𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑖𝑖/𝑦𝑦) is the flow of accumulated production of good i and 
𝑚𝑚𝑖𝑖 its inertia (mass) of production with unit (€ × 𝑦𝑦2)/𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑖𝑖2.  
 

2.2.2. Potential energy of production 
 

In physics, potential energy is stored energy so that even a particle 
that does not move can have potential energy. If the constraining forces 
cease to act on the particle, it starts to move in the direction where its 
potential energy diminishes in the fastest possible way4. Potential energy is 
thus something a particle is “willing” to change to kinetic energy (or 
motion). Thus we make the following definition: the potential energy of a 
firm in the production of good i is its ability to increase its profitability in 
this production. If a firm cannot increase its profitability, it has zero 
potential energy in this production and the firm has no motivation to 
change its flow of accumulated production of the good.  

The idea of economic potential energy is that production is made to 
earn money. If in the space of accumulated productions there is a direction 
the firm can enter so that its speed of accumulation of wealth increases, the 
firm has potential productive (energy). Traditionally, it has been thought in 
economics that a firm has production potential if it does not operate at full 
capacity. The above definition changes this thinking so that production 
potential is only that part of existing capacity that can be exploited in a 
profitable way. On the other hand, increasing production capacity belongs 
in the production potential of a firm, too, if this can be made in a profitable 
way. Adding investments in the current model is, however, a future 
research problem and is omitted in this study. In other words, if we let a 
profit-seeking firm operate freely, it starts to move in the direction in the 
space of its accumulated productions where its wealth accumulates the 
fastest way. Thus economies and firms with greatest profit opportunities 
have the greatest production potentials. 

                                                            
4 Think of a ball on the top of a hill. It moves down the hill along the path that is 

steepest in every situation. 
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Economic kinetic energy originates from the fact that changing the 
velocity of production of a good needs an effort to overcome the inertial 
factors resisting these changes. If zero-force is acting upon the production 
of good i, then the velocity of production of good i is constant and profit 
accumulates in the firm at maximum velocity. In this case the potential 
energy of the firm with respect to good i is zero, and all energy in this 
production is in the form of kinetic energy. However, if the force acting 
upon good i is positive (negative), there is positive (negative) acceleration 
in production of good i, and the kinetic energy of good i increases 
(decreases) accordingly. If the kinetic energy of production of good i 
increases, this usually decreases the potential energy (available extra 
profit) of the firm with respect to good i, see section 3.2. However, if 
increasing returns to scale prevail in production, then the marginal 
profitability of a good does not decrease when the velocity of production is 
increased. Thus raising the flow of production of a good with increasing 
returns to scale creates more energy than it uses, and this production has 
positive acceleration ad infinity. In the real world, however, this kind of 
situation exists usually for a limited time. Consider e.g. a mobile phone 
producer that can expand its production as long as there are regions in the 
world where no mobile phones exist. Notice that all profitable firms with 
non-zero production are energetically perpetual motion machines; they 
create more energy than they use, that is, their revenues are greater than 
their costs. We clarify the defined concepts in the next section. 
 

3. Newtonian and Lagrangian theories  
of a firm adjusting its flows of production 

 
3.1. Newtonian theory of a firm adjusting its flows  

of production 
 

Suppose the expected profit function of a two-good firm in 
competitive markets from time unit y is  

                                 

           Π𝑒𝑒(𝑡𝑡) = 𝑝𝑝1𝑒𝑒(𝑡𝑡)𝑞𝑞1(𝑡𝑡) + 𝑝𝑝2𝑒𝑒(𝑡𝑡)𝑞𝑞2(𝑡𝑡) − 𝐶𝐶𝑒𝑒(𝑞𝑞1(𝑡𝑡), 𝑞𝑞2(𝑡𝑡), 𝑡𝑡),             (3)  
 

where 𝑞𝑞𝑖𝑖(𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑖𝑖/𝑦𝑦) is the flow of accumulated production of good i at time 
moment t, 𝑝𝑝𝑖𝑖(€/𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑖𝑖) the corresponding unit price, C(𝑞𝑞1, 𝑞𝑞2, 𝑡𝑡)(€ 𝑦𝑦⁄ ) the 
cost function of the firm, and 𝜕𝜕𝐶𝐶 𝜕𝜕𝑞𝑞𝑖𝑖(€/𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑖𝑖)⁄  the marginal cost of good 
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𝑢𝑢, 𝑢𝑢 = 1,2; expected value is denoted by subscript e. Time t in the cost 
function describes possible effects technical development and changes in 
input prices may have on the costs with time. This analysis can be 
extended to n goods, too, but here we operate with only two goods to keep 
the analysis as simple as possible. Taking the time derivative of Eq. (3) 
gives: 
  

   Π̇𝑒𝑒 = �𝑝𝑝1𝑒𝑒 −
𝜕𝜕𝐶𝐶𝑒𝑒
𝜕𝜕𝑞𝑞1

� �̇�𝑞1 + �𝑝𝑝2𝑒𝑒 −
𝜕𝜕𝐶𝐶𝑒𝑒
𝜕𝜕𝑞𝑞2

� �̇�𝑞2 + �̇�𝑝1𝑒𝑒𝑞𝑞1 + �̇�𝑝2𝑒𝑒𝑞𝑞2 −
𝜕𝜕𝐶𝐶𝑒𝑒
𝜕𝜕𝑡𝑡

.      (4) 
                                                                                                                                                   

Now, a profit-seeking firm aims to increase its profit with time, i.e. to 
get  Π̇𝑒𝑒 > 0. Because prices are out of control of the firm, and here we do 
not model the firm’s technological development that could make 
𝜕𝜕𝐶𝐶𝑒𝑒 𝜕𝜕𝑡𝑡⁄ < 0, the firm can affect its profit only by adjusting its flows of 
production as 

                                     𝑚𝑚𝑖𝑖�̇�𝑞𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑒𝑒 −
𝜕𝜕𝐶𝐶𝑒𝑒
𝜕𝜕𝑞𝑞𝑖𝑖

,   𝑢𝑢 = 1,2,                                        (5) 
 

where �̇�𝑞𝑖𝑖 = �̈�𝑄𝑖𝑖 (𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑖𝑖/𝑦𝑦2) is the acceleration of accumulated production of 
good i, 𝑢𝑢 = 1,2. With positive constant 𝑚𝑚𝑖𝑖 �€ × 𝑦𝑦2 𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑖𝑖2⁄ �, Eq. (5) is the 
simplest possible equation that forces �̇�𝑞𝑖𝑖 and 𝑝𝑝𝑖𝑖𝑒𝑒 − 𝜕𝜕𝐶𝐶𝑒𝑒 𝜕𝜕𝑞𝑞𝑖𝑖⁄  to be of equal 
sign, which makes their product positive. Thus adjusting 𝑞𝑞𝑖𝑖, 𝑢𝑢 = 1,2 as in 
Eq. (5) the firm guarantees that the first two additive terms in Eq. (4) are 
positive and increase Π̇𝑒𝑒. Interpreting 𝑚𝑚𝑖𝑖 as the inertial mass of production 
of good i and 𝐹𝐹𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑒𝑒 − 𝜕𝜕𝐶𝐶𝑒𝑒 𝜕𝜕𝑞𝑞𝑖𝑖⁄  as the “force” acting upon the 
production of good i, Eq. (5) is of identical form as Newton’s equation 
𝑚𝑚𝑚𝑚 = 𝑭𝑭. Assuming that 𝑚𝑚𝑖𝑖 , 𝑢𝑢 = 1,2 are not infinite or zero, Eq. (5) shows 
that the firm moves in the space of its accumulated productions in the 
direction defined by force vector 𝑭𝑭 = (𝐹𝐹1,𝐹𝐹2)  where its wealth 
accumulates the fastest way. The neoclassical framework is a special case 
of Eq. (5) with 𝑚𝑚𝑖𝑖 = 0, 𝑢𝑢 = 1,2 , i.e. in that case an infinite speed of 
adjustment is assumed. Now, if 𝑝𝑝1𝑒𝑒 > 𝜕𝜕𝐶𝐶𝑒𝑒 𝜕𝜕𝑞𝑞1⁄  and 𝑝𝑝2𝑒𝑒 < 𝜕𝜕𝐶𝐶𝑒𝑒 𝜕𝜕𝑞𝑞2⁄ , then 
�̇�𝑞1 > 0 and �̇�𝑞2 < 0, and vice versa. Notice that Eq. (5) corresponds to one 
of the intuitive dynamic principles in economics stated in [2] referred 
earlier now presented in an exact form. 
 

Remark! The force vector in Eq. (5) is internal to the firm, and thus 
no external force is acting upon the firm’s production. Eq. (5) is a 
mathematical “law” that characterizes the behavior of a profit-seeking 
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firm, similarly as Newtonian equation characterizes the behavior of a 
particle that “wants to minimize its energy”. Notice that the force in Eq. (5) 
depends on time via the prices and the cost function. This allows us to 
model the dynamics of production of a firm that has changing revenues and 
costs in time. Uncertainties may also exist in the prices and in the cost 
function, and in the force there may be tax and other parameters by which 
the government can affect the force. This allows us to model economic 
policy making by applying control theory as in engineering. 
 

Example 1. Let the cost function of a firm be 𝐶𝐶(𝑞𝑞1, 𝑞𝑞2) = 10𝑞𝑞1 +
10𝑞𝑞2 + 3𝑞𝑞12 + 3𝑞𝑞22 , where the flows of production are denoted as  
𝑞𝑞𝑖𝑖 , 𝑢𝑢 = 1,2. The corresponding prices are assumed constant, 𝑝𝑝1 = 70 and 
𝑝𝑝2 = 100 . The expected profit function, where no uncertainties are 
assumed, is then: 
 

              Π = 70𝑞𝑞1 + 100𝑞𝑞2 − 10𝑞𝑞1 − 10𝑞𝑞2 − 3𝑞𝑞12 − 3𝑞𝑞22.                          (6) 
        

The constants in Eq. (6) are assumed to have proper units that make 
Eq. (6) dimensionally well-defined. The Newtonian equations of motion in 
Eq. (5) with the profit function in Eq. (6) are  
 

�𝑚𝑚1�̇�𝑞1
𝑚𝑚2�̇�𝑞2

� = �60 − 6𝑞𝑞1
90 − 6𝑞𝑞2

�, 

and they have the solutions: 
                                                       

                                     𝑞𝑞1
(𝑡𝑡) = 10 + 𝐴𝐴1𝑒𝑒

− 6𝑡𝑡
𝑚𝑚1 ,

𝑞𝑞2(𝑡𝑡) = 15 + 𝐴𝐴2𝑒𝑒
− 6𝑡𝑡
𝑚𝑚2 ,

                                                  (7) 

                                                       

where 𝐴𝐴𝑖𝑖 , 𝑢𝑢 = 1,2  are the constants of integration. The system is stable  
and will converge into the neoclassical equilibrium: 𝑞𝑞1∗ = 10,𝑞𝑞2∗ = 15. In 
Fig. 1, two solution paths with 𝑚𝑚1 = 𝑚𝑚2 = 2  and 𝐴𝐴1 = 𝐴𝐴2 = −5  are 
demonstrated. Notice that according to the profit function in Eq. (6), the 
firm can adjust both its productions independently because the costs of the 
goods are not interrelated.  
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Figure 1. Some solution paths for the flows of production in Eq. (7) 
 
Fig. 2 shows the force field acting upon the production created by the 

profit function in Eq. (6) and the two singular equations. The force field 
shows in which direction the profit-seeking firm changes its flows of 
production in different situations. The length of the vector (arrow) shows 
the strength of the force field in the corresponding point.  
                      

 
    

Figure 2. The force field of Eq. (6)  
and equations �̇�𝑞1 = 0 ⟺ 𝑞𝑞1 = 10, �̇�𝑞2 = 0 ⟺ 𝑞𝑞2 = 15. 
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The zero-force situation   
 

𝜕𝜕Π
𝜕𝜕𝑞𝑞1

= 𝑝𝑝1 −
𝜕𝜕𝐶𝐶
𝜕𝜕𝑞𝑞1

= 0  ⟺   𝑞𝑞1 = 10,   
 

𝜕𝜕Π
𝜕𝜕𝑞𝑞2

= 𝑝𝑝2 −
𝜕𝜕𝐶𝐶
𝜕𝜕𝑞𝑞2

= 0  ⟺  𝑞𝑞2 = 15, 
 

corresponds to neoclassical theory. In the optimum, the firm cannot 
increase its profitability and so the firm produces at constant optimal 
speed. This corresponds to point 𝑞𝑞1 = 10,𝑞𝑞2 = 15 in Fig. 2. 

In the neoclassical theory, firms are assumed to adjust their 
production after price changes, and so firms are not always assumed to be 
in their equilibrium state. However, so far the adjustment between two 
equilibriums has not been modeled formally but only explained verbally. 
Newtonian Eq. (5) solves this problem by explaining how the firm reaches 
its new equilibrium after a price change. 

Example 2. Let the cost function of a firm be 𝐶𝐶 = 10𝑞𝑞1 + 10𝑞𝑞2 +
30𝑞𝑞1𝑞𝑞2, where the last term makes the costs of the two goods interrelated. 
The corresponding profit function as in Example 1 is  
 

                    𝛱𝛱 = 70𝑞𝑞1 + 100𝑞𝑞2 − 10𝑞𝑞1 − 10𝑞𝑞2 − 30𝑞𝑞1𝑞𝑞2.                        (8)         

The Newtonian equations of production are now 

                                           �𝑚𝑚1�̇�𝑞1
𝑚𝑚2�̇�𝑞2

� = �60 − 30𝑞𝑞2
90 − 30𝑞𝑞1

� ,                                       (9) 
 

and their solutions are:  
 

𝑞𝑞1(𝑡𝑡) =
1

2√𝑚𝑚1
𝑒𝑒
− 30𝑡𝑡
√𝑚𝑚1𝑚𝑚2 �6𝑒𝑒

30𝑡𝑡
√𝑚𝑚1𝑚𝑚2�𝑚𝑚1 + 𝐴𝐴1�𝑚𝑚1 + 𝐴𝐴2�𝑚𝑚2

+ 𝑒𝑒
60𝑡𝑡

√𝑚𝑚1𝑚𝑚2(𝐴𝐴1�𝑚𝑚1 − 𝐴𝐴2�𝑚𝑚2)�, 

𝑞𝑞2(𝑡𝑡) =
1

2√𝑚𝑚2
𝑒𝑒
− 30𝑡𝑡
√𝑚𝑚1𝑚𝑚2 �4𝑒𝑒

30𝑡𝑡
√𝑚𝑚1𝑚𝑚2�𝑚𝑚2 + 𝐴𝐴1�𝑚𝑚1 + 𝐴𝐴2�𝑚𝑚2  

+ + 𝑒𝑒
60𝑡𝑡

√𝑚𝑚1𝑚𝑚2(−𝐴𝐴1�𝑚𝑚1 + 𝐴𝐴2�𝑚𝑚2)�, 

where 𝐴𝐴1,𝐴𝐴2  are the constants of integration. Setting 𝑚𝑚1 = 𝑚𝑚2 = 2 , 
𝐴𝐴1 = 10, 𝐴𝐴2 = 5, we get the solution paths as shown in Fig. 3.     
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Figure 4. The force field of Eq. (8)  
and equations �̇�𝑞1 = 0 ⟺ 𝑞𝑞2 = 2, �̇�𝑞2 = 0 ⟺ 𝑞𝑞1 = 3 
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Figure 3. Some solution paths for the flows of production in Eq. (9). 
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The force field corresponding to the profit function in Eq. (8) and the 
two singular equations are shown in Fig. 4. The equilibrium is a saddle and 
the initial conditions define which one of the two productions expands 
without limit and which diminishes to zero. This example shows that the 
production of a good ceases with time if it becomes non-profitable. Notice 
that this profit function is impossible in the neoclassical framework 
because no unique optimum exists for this firm.  

 

Example 3. Here we show that time dependent prices and costs  
can be handled in this framework too. Suppose the prices are  
𝑝𝑝1 = 70 + 5 sin(2𝑡𝑡) ,𝑝𝑝2 = 100, and the cost function of the firm is: 
                                            

𝐶𝐶 = 10𝑞𝑞1 + 10(1 − 0.5𝑡𝑡)𝑞𝑞2 + 3𝑞𝑞12 + 3𝑞𝑞22. 
 

Thus 𝑝𝑝1 fluctuates around value 70, 𝑝𝑝2 is constant, and the costs of 
good 2 diminish with time due to e.g. technological progress. The profit 
function of Eq. (6) takes then the form 
                  

Π = (70+5 sin(2𝑡𝑡)) 𝑞𝑞1 + 100𝑞𝑞2 − 10𝑞𝑞1 − 
 

                                        −10(1 − 0.5𝑡𝑡)𝑞𝑞2 − 3𝑞𝑞12 − 3𝑞𝑞22.                              (10) 
 

The corresponding Newtonian equations are 
                                                

                                 �𝑚𝑚1�̇�𝑞1
𝑚𝑚2�̇�𝑞2

� = �60 + 5 sin(2𝑡𝑡) − 6𝑞𝑞1
90 + 5𝑡𝑡 − 6𝑞𝑞2

� ,                             (11) 
 

and their solutions are:   
 

𝑞𝑞1(𝑡𝑡) = 𝐴𝐴1𝑒𝑒
− 6𝑡𝑡
𝑚𝑚1 +

20(9 + 𝑚𝑚1
2) − 5𝑚𝑚1cos(2𝑡𝑡) + 15sin(2𝑡𝑡)

2(9 + 𝑚𝑚1
2)

,

𝑞𝑞2(𝑡𝑡) =
5

36
(108 −𝑚𝑚2 + 6𝑡𝑡) + 𝐴𝐴2𝑒𝑒

− 6𝑡𝑡
𝑚𝑚2 .                       

  

 
With the initial condition 𝐴𝐴1 = 𝐴𝐴2 = 10, 𝑚𝑚1 = 𝑚𝑚2 = 2 , the 

solutions are graphed in Fig. 5. According to Fig. 5, 𝑞𝑞1 oscillates around  
10 while 𝑞𝑞2 eventually has a positive linear time trend. Permanent growth 
and cyclical dynamics can thus be explained in the introduced framework, 
and this example shows that time dependent prices and costs create similar 
effects on production. This profit function is, however, impossible in the 
neoclassical framework where time is abstracted away.  
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Figure 5. Some solution paths for the flows of production in Eq. (11). 
 

The force field created by the profit function in Eq. (10) is shown in 
Fig. 6, where time is on the vertical axis, 𝑞𝑞1 on the horizontal axis, and 𝑞𝑞2 
on the third (depth) axis. The figure shows how the force field vanishes in 
the direction of 𝑞𝑞1 in the turning points of 𝑞𝑞1.  
 

                                                                                                            

Figure 6. The force field of Eq. (10). 
 

Examples 1-3 show that different profit functions create stable and 
unstable force fields. A stable force field leads to the profit maximizing state 
that corresponds to the neoclassical theory. On the other hand, increasing 
returns to scale, cost advances due to co-production, and time dependent 
prices or costs may make the force field unstable. Unstable force field leads to 
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the growth or to the collapse of production. These common real world events 
cannot be explained by using the neoclassical theory.  

In [17], the neoclassical theory of production and its assumed duality 
results are tested by using U.S. manufacturing data. The conclusion is that 
the theory does not pass the validity tests, and that the primal and the dual 
theory do not yield similar implications. In [18] is tested the neoclassical 
theory of production against the Newtonian one presented here by using 
Finnish data. In every tested 13 industries, Newtonian theory gives 
reasonable results while the neoclassical one gives a meaningful fit in only 
one industry, and even that fit is not as good as that given by the 
Newtonian theory. Thus the neoclassical theory of production has not got 
support in empirical tests while the Newtonian has.  
 

3.2. Lagrangian theory of a firm adjusting its flows  
of production 

 

Next we derive Eq. (5) with the profit function in Eq. (3) by using 
Lagrange’s principle. At time moment t, the expected extra profit the firm 
can earn by adjusting its flows of production during the firm’s planning 
time unit (𝑡𝑡, 𝑡𝑡1)  −  the potential energy of this production system 
𝑃𝑃𝑒𝑒(𝑡𝑡, 𝑡𝑡1)(€) − is: 

𝑃𝑃𝑒𝑒(𝑡𝑡, 𝑡𝑡1) = � �Π𝑒𝑒(𝑞𝑞1∗,𝑞𝑞2∗) − Π𝑒𝑒�𝑞𝑞1(𝑠𝑠),𝑞𝑞2(𝑠𝑠)��
𝑡𝑡1

𝑡𝑡
 𝑑𝑑𝑠𝑠

= � Π𝑒𝑒(𝑞𝑞1∗,𝑞𝑞2∗)
𝑡𝑡1

𝑡𝑡
𝑑𝑑𝑠𝑠 −� Π𝑒𝑒�𝑞𝑞1(𝑠𝑠),𝑞𝑞2(𝑠𝑠)�

𝑡𝑡1

𝑡𝑡
𝑑𝑑𝑠𝑠,  𝑡𝑡1 > 𝑡𝑡,   

 

where 𝑞𝑞𝑖𝑖∗, i=1,2, are the possible fixed flows of production that maximize 
the expected profit of the firm at time unit (𝑡𝑡, 𝑡𝑡1), and 𝑞𝑞𝑖𝑖(𝑡𝑡) are current 
flows. If the optimal flows of production 𝑞𝑞𝑖𝑖∗ do not exist (see Fig. 4), then 
Π𝑒𝑒(𝑞𝑞1∗,𝑞𝑞2∗)  is a large enough positive constant expected profit 
Π𝑒𝑒�𝑞𝑞1(𝑠𝑠), 𝑞𝑞2(𝑠𝑠)� never reaches. The potential economic energy is thus the 
larger the more the firm can increase its profitability by adjusting its flows 
of production. At time moment t, Lagrange’s formalism is then:  
 

 Min
𝑄𝑄𝑖𝑖(𝑡𝑡),�̇�𝑄𝑖𝑖(𝑡𝑡)

�𝐿𝐿(𝑡𝑡)𝑑𝑑𝑡𝑡 ,    𝐿𝐿 = 𝑇𝑇1 + 𝑇𝑇2 − 𝑃𝑃𝑒𝑒(𝑡𝑡, 𝑡𝑡1)                 
 

=
1
2
𝑚𝑚1�̇�𝑄12 +

1
2
𝑚𝑚2�̇�𝑄22 − � �Π𝑒𝑒��̇�𝑄1∗, �̇�𝑄2∗� − Π𝑒𝑒 ��̇�𝑄1(𝑠𝑠), �̇�𝑄2(𝑠𝑠)��

𝑡𝑡1

𝑡𝑡
 𝑑𝑑𝑠𝑠,    (12)  
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where  Ti, 𝑢𝑢 = 1,2, are the kinetic energies of the two goods described in 
Eq. (2), �̇�𝑄𝑖𝑖(𝑠𝑠) = 𝑞𝑞𝑖𝑖(𝑠𝑠),  i=1,2, and L is the Lagrangian function of the 
production system. The necessary conditions for optimum of the dynamic 
problem in Eq. (12) with the profit function in Eq. (3) are 
 

𝜕𝜕𝐿𝐿
𝜕𝜕𝑄𝑄𝑖𝑖

−
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝑄𝑖𝑖

� = 0 ⟺  𝑚𝑚𝑖𝑖�̈�𝑄𝑖𝑖 =
𝜕𝜕Π𝑒𝑒
𝜕𝜕�̇�𝑄𝑖𝑖

 ⟺  𝑚𝑚𝑖𝑖�̇�𝑞𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑒𝑒 −
𝜕𝜕𝐶𝐶𝑒𝑒
𝜕𝜕�̇�𝑄𝑖𝑖

, 𝑢𝑢 = 1,2. 
 

The Newtonian equations given in Eq. (5) can thus be derived from 
the Lagrangian function in Eq. (12) by using Lagrange’s principle; notice 
that �̈�𝑄𝑖𝑖 = �̇�𝑞𝑖𝑖 , 𝑢𝑢 = 1,2. 

 
4. Newtonian theory  

of a firm adjusting its accumulated production 
 

In section 3 we modeled the behavior of a firm that produces goods 
with varying flows of production, and thus the firm can be considered as an 
adjustor of its flows of production of goods. However, there exist also 
firms that produce goods only after they have been sold. For example, 
passenger ships are such goods. Next we model the behavior of a one-good 
firm that adjusts its accumulated production on the basis of the expected 
profit from producing an additional unit.  

The expected profit from producing one extra unit of the good at time 
moment t is  
 

Π1𝑒𝑒(𝑡𝑡) = 𝑝𝑝(𝑡𝑡) − 𝐶𝐶1𝑒𝑒(𝑡𝑡),  
 

where 𝑝𝑝(€/𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡) is the price at which the firm can sell its product, and 
𝐶𝐶1𝑒𝑒 (€/𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡) the expected unit cost of the good at time moment t. The 
force acting upon the production is then Π1𝑒𝑒 , and a profit-seeking firm 
adjusting its accumulated production produces as  
 

𝑄𝑄(𝑡𝑡) − 𝑄𝑄(𝑡𝑡 − 𝑦𝑦) = �
𝑝𝑝(𝑡𝑡) − 𝐶𝐶1𝑒𝑒(𝑡𝑡)

𝑚𝑚
,          𝑢𝑢𝑖𝑖  𝑝𝑝(𝑡𝑡) > 𝐶𝐶1𝑒𝑒(𝑡𝑡),

0            ,           𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑢𝑢𝑠𝑠𝑒𝑒,
 

 
where positive constant 𝑚𝑚 (€/𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡2)  measures the inertia in this 
production. This force creates the following time path for accumulated 
production: 
 

𝑄𝑄(𝑡𝑡) = 𝑄𝑄(𝑡𝑡 − 𝑦𝑦) +
𝑝𝑝(𝑡𝑡) − 𝐶𝐶1𝑒𝑒(𝑡𝑡)

𝑚𝑚
, 
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and production stops if p (𝑡𝑡) ≤ 𝐶𝐶1𝑒𝑒(𝑡𝑡).  Thus accumulated production 
increases if product price exceeds unit costs, and constant 𝑚𝑚 defines how 
many units are produced when p(𝑡𝑡) > 𝐶𝐶1𝑒𝑒(𝑡𝑡). This example shows that 
different theories are needed for firms that behave in different ways. 
 

5. Discussion and conclusions 
 

The neoclassical theory of a firm explains constant positive profit 
maximizing flow of production, and so the theory cannot explain common 
real world events like business cycles, firms’ permanent growth, or 
bankruptcies. Thus economics needs a more general framework for 
modeling firms’ productions. We introduced here a candidate for such by 
applying Newtonian and Lagrangian frameworks in physics. These two 
frameworks were shown to yield the same equations of motion for the 
production of a profit-seeking firm. Our study is in line with the pioneers 
of the neoclassical theory that had the idea to define the economic 
correspondents for the concepts of kinetic and potential energy in physics. 
We altered the preliminary definitions for these concepts, however, and we 
hope that these new concepts are useful in the development of similar tools 
for modeling economic dynamics as has been developed for physics in 
classical statistical and in quantum mechanics. The introduced framework 
gives the static neoclassical theory as a special case: the zero-force 
situation. Thus these two frameworks are consistent.  
 

REFERENCES 
 
[1]  Mirowski, Philip (1989), More Heat than Light, Economics as Social Physics, 

Physics as Nature's Economics, Cambridge University Press. 
[2]  Mas-Colell, Andreu, Michael D. Whinston and Jerry R. Green (1995), 

Microeconomic Theory, Oxford University Press, New York. 
[3]  Solow, Robert M. (1985), Economic History and Economics, American Economic 

Review, 75, 328-331. 
[4]  Walras, Leon (1969), Elements of pure economics, Trans. W. Jaffee, New York, 

Kelly. 
[5]  Samuelson, Paul (1950), The Problem of Integrability in Utility Theory, 

Economica, 17, 355-385. 
[6]  Fisher, Irving (2006), Mathematical Investigation in the Theory of Value and 

Prices, and Appreciation and Interest, Cosimo, Inc. New York. (Original work at 
1892.) 

[7]  Lux, Thomas & Michele Marchesi (1999), Scaling and criticality in a stochastic 
multi-agent model of a financial market, Letters to Nature, Vol. 397, February 
1999. 



26 

[8]  Dragulescu Adrian & Victor M. Yakovenko (2000), Statistical mechanics of 
money, The European Physical Journal B 17, 723-729. 

[9]  Chakraborti, Anirban & Bikas K. Chakrabarti (2000), Statistical mechanics of 
money: how saving propensity affects its distribution, The European Physical 
Journal B 17, 167-170. 

[10]  Kusmartsev, F. V. (2011), Statistical mechanics of economics I, Physics Letters A, 
375, 966-973. 

[11] Shields, Christopher (2007), Aristotle, Routledge, New York. 
[12]  Evans, Griffith C. (1924), The Dynamics of Monopoly, American Mathematical 

Monthly, February, 77-83. 
[13]  Jorgenson, Dale T. (1963), Capital Theory and Investment Behavior, American 

Economic Review, May 247-259. 
[14]  Estola, Matti (2013), Consistent and Inconsistent ways to Dynamize the 

Neoclassical Theory, Hyperion International Journal of Econophysics & New 
Economy, Vol. 6, Issue 1.  

[15]  De Jong, Fritz (1967), Dimensional Analysis for Economists, Amsterdam, North-
Holland. 

[16]  Marion, Jerry B. & Stephen T. Thornton (1988), Classical Dynamics of Particles 
and Systems, Third Ed., Harcourt Brace Jovanovich, Inc.  

[17]  Appelbaum, Elie (1978), Testing neoclassical production theory, Journal of 
Econometrics, 7, (87-102). 

[18]  Estola, Matti & Alia A. Dannenberg (2012), Testing the neoclassical and the 
Newtonian theory of production, Physica A, Vol. 391, Issue 24 (6519-6527). 


	01 Spanulescu Gheorghiu final
	01 Estola bun

