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NEOCLASSICAL AND NEWTONIAN THEORY  

OF PRODUCTION: AN EMPIRICAL TEST 

Matti ESTOLA 

 
Abstract. We search for regularities observed in the production of goods. Our 

first observation is that unit root is found in annual productions in all 

manufacturing industries in Finland and in Sweden. Thus annual industrial 

flows of production are observed to follow a first order difference equation 

(FDE). Industrial flows of production have also exogenous time dependencies, 
however, and we explain these by changes in the corresponding product prices 

due to the profit-seeking behavior of firms in the industries. We test the 

Newtonian theory of production against the neoclassical one in explaining how 
prices affect industrial flows of production. Our observations are that FDE 

outperforms the neoclassical theory in explaining the flows of production in 

every tested industry in both countries, and the Newtonian theory outperforms 
the FDE in 10 cases of 13 in Finnish industries, and in 14 cases of 18 in 

Swedish industries. Finally, the Newtonian theory outperforms the neoclassical 
one in every tested industry. 

Keywords: Industrial production, Neoclassical economics, Newtonian 

economics.  

JEL: C51, D21, D24.  

 

1. Introduction 

The neoclassical theory of production is presented in all textbooks of 

economics, even though its accuracy has not much been tested empirically. 

We have found only one article [1] that studies the empirical performance 

of the static neoclassical theory of production as it is presented in 

textbooks of economics. Appelbaum [1] summarizes his results as follows: 

“We find that except for one case the theory does not pass the proposed 

tests and furthermore, the primal and dual do not yield the same 

implications”.  
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Even though the neoclassical theory of production as presented in 

textbooks has not got support in empirical tests, the theory relies on the 

success obtained in the estimation of neoclassical production functions, see 

[2, 3]. Even though the theory describes firms’ behavior at micro-level, its 

testing has been made mostly by using industry or macro level data. In [2], 

the Cobb-Douglas – type of production function is introduced and 

estimated by aggregate level U.S. data of 1899-1922. The marginal 

productivity of labor is estimated to be 3/4, and that of capital as 1/4; thus 

constant returns to scale were observed in production. In spite of the 

immense problems in constructing a macro-level production function from 

various heterogeneous production processes [4], this has not stopped the 

estimation of aggregate level production functions, see e.g. [5, 6]. 

The results obtained in [2, 3] have been questioned in [7-10], 

however. These authors show that the observed success in estimating the 

neo-classical production functions at industrial and aggregate level data has 

been based on a misunderstanding; the true estimated relation has been an 

accounting identity, and not a physical production function. Thus all the 

empirical support for the neoclassical theory has been based on an error. 

According to Kirman [11], the economic crisis at 2008 showed that the 

representative agent based equilibrium macro models are useless in 

forecasting economic behavior and they should be replaced by modeling the 

interactions between heterogeneous agents. This would change current 

macroeconomic models – that are based on nineteenth-century physics – to 

resemble more twentieth-century physics where modeling techniques 

created for complex systems are applied. To get into that position, 

however, we need to take similar steps as have been taken in physics, that 

is, create Newtonian and Lagrangian mechanics for economics and this 

way enter into statistical and quantum economics. Here we follow this line 

of research and compare the empirical performance of the Newtonian 

theory of production introduced in [12] to the neoclassical one by applying 

Finnish and Swedish data. A similar test has been made in [13], but here our 

data of Finnish industries is longer and we also have data of the corresponding 

Swedish industries too. 

This study is organized as follows. The data is described in Section 2 

and its time series properties are analyzed in Section 3. The two theories to 

be tested are presented in Section 4, and in Section 5 are the results of this 

testing. Section 6 is a summary. 
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2. The data used in the study 

We use annual production values at year 2010 prices measuring 

production volumes in Finnish and Swedish manufacturing industries  

[14, 15]. The Finnish data is in monetary terms and the Swedish data is 

indexes; in Finland, a less disaggregated data is available. The data 

contains the following 18 industries in Finland at 1975-2013, and in 

Sweden at 1981-2012:  C10-C12: Food products, beverages and tobacco 

products, C13-C15: Textiles, clothing, and leather products, C16: Pulp, 

wood and wood products except furniture, C17: Paper and paper products, 

C18: Publishing and printing, C19: Refined petroleum products, coke and 

nuclear fuel, C20-C21: Chemicals and chemical products, C22: Rubber 

and plastic products, C23: Other non-metallic mineral products, C24: Basic 

metals, C25: Fabricated metal products, C26: Computer, electronic and 

optical products, C27: Electrical equipment, C28: Machinery and 

equipment, C29: Motor vehicles, trailers, and semi-trailers, C30: Other 

transport equipment, C31-C32: Furniture and other manufacturing, C33: 

Repair and installation of machinery and equipment. These sectors cover 

the whole Finnish and Swedish manufacturing. 

We have current value time series 𝑝𝑖𝑛𝑞𝑖𝑛and fixed price time  

series at 2010 prices as 𝑝𝑖2010𝑞𝑖𝑛, 𝑖 = 1, … , 𝑛, where year 2010 price 

𝑝𝑖2010(€/𝑢𝑛𝑖𝑡) is constant, and by 𝑞𝑖𝑛(𝑢𝑛𝑖𝑡/𝑦𝑒𝑎𝑟) is denoted the flow of 

production in industry i. The estimates for industrial prices is obtained as 

𝑝𝑖𝑛𝑞𝑖𝑛 (𝑝𝑖2010𝑞𝑖𝑛)⁄ = 𝑝𝑖𝑛 𝑝𝑖2010⁄ . 

3. Time series properties of the data 

The unit root tests in Table 1 show that in production volumes, only 

in industry C29-C30 in Finland the existence of unit root can be rejected at 

5 % critical level. At 1 % critical level, the existence of unit root cannot be 

rejected in any industrial flow of production in both countries. In prices at 

5 % critical level, in Finland only in industry C18 and in Sweden only in 

industries C13-C15, C27, C28, C29, and C31-C32 the existence of unit 

root can be rejected. In prices at 1 % level, only in Sweden in industries 

C13-C15 and C29 the existence of unit root can be rejected. 

Table 1 implies that the time series of the annual flows of industrial 

productions follow the process 

                                                           𝑞𝑛 = 𝑎0 + 𝑎1𝑞𝑛−1 + 𝑓(𝑛),    (1)  
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where by 𝑛 is denoted discrete time and if 𝑎1 = 1, unit root exists in the 

series. Function 𝑓(𝑛) describes changes in the annual flow of production at 

time unit 𝑛 independent of its past behavior. Now, according to Table 1, in 

all industrial flows of production holds approximately 𝑎1 = 1, and then the 

solution of  Eq.(1) is  
 

                       𝑞𝑛 = 𝑞0 + 𝑎0𝑛 + ∑ 𝑓(1 + 𝑖),𝑛−1
𝑖=0 𝑞0  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.   (2) 

An essential difference in the behavior of industrial flows of 

production depends on whether 𝑎0 deviates from zero. If 𝑎0 = 0, the linear 

time trend 𝑎0𝑛 vanishes in Eq. (2) and then 𝑞𝑛 fluctuates solely due to 

function 𝑓(𝑛). To test this matter, we estimate the corresponding 

difference equations, see Table 2. 
 

Table 1.  
ADF unit root tests for the time series 

 

Finland Sweden 

Industry 
ADF (prob.), 

volume 

ADF (prob.), 

price 
Industry 

ADF (prob.), 

volume 

ADF (prob.), 

price 

C10-C12 −0.9 (0.76) −2.0 (0.27) C10-C12 −1.3(0.63) −2.9(0.05) 

C13-C15 −0.9 (0.79) −2.8 (0.06) C13-C15 −1.2(0.66) −6.0(0.00) 

C16-C17 −1.8 (0.38) −1.9 (0.33) C16 −1.6(0.46) −1.6(0.49) 

C18 −1.9 (0.34) −3.6 (0.01) C17 −1.3(0.63) −2.3(0.18) 

C19-C22 −0.4 (0.89) −0.3 (0.92) C18 −0.1(0.94) −2.8(0.07) 

C23 −1.6 (0.45) −1.4 (0.55) C19 −0.5(0.87) −1.0(0.99) 

C24 −1.5 (0.53) −1.5 (0.52) C20-C21 −0.7(0.84) −2.4(0.14) 

C25 −1.2 (0.67) −0.7 (0.83) C22 −1.7(0.42) −2.0(0.30) 

C26-27 −0.8 (0.81) −1.8 (0.36) C23 −0.5(0.87) −2.2(0.20) 

C28 −0.9 (0.78) −0.8(0.82) C24 −2.1(0.25) −0.1(0.94) 

C29-C30 −3.4 (0.02) −1.5(0.54) C25 −2.1(0.26) −0.7(0.84) 

C31-C32 −2.2 (0.19) −1.5(0.54) C26 −0.2(0.93) −0.7(0.82) 

C33 −1.7 (0.43) −0.2(0.93) C27 −1.0(0.75) −3.1(0.04) 

   C28 −1.1(0.69) −3.0(0.04) 

   C29 −1.4(0.58) −4.8(0.00) 

   C30 −1.7(0.41) −0.0(0.95) 

   C31-C32 −1.2(0.67) −3.7(0.01) 

   C33 −1.5(0.53) −2.0(0.29) 

 



11 
 

Table 2. 

First order difference equations (FDE) for annual production volumes 

Finland Sweden 

Industry 𝑎0 (T-stat.) 𝑎1(T-stat.) Adj. 𝑅2 Akaike Industry 𝑎0 (T-stat.) 𝑎1(T-stat.) 
Adj. 

𝑅2 
Akaike 

C10-C12 306.0 (1.5) 1.0 (42.1) 0.98 13.6 C10-C12 8.9 (1.3) 0.9 (12.7) 0.84 4.0 

C13-C15 −14.9(−0.2) 1.0 (32.7) 0.97 12.8 C13-C15 3.2 (0.5) 1.0 (23.8) 0.95 6.9 

C16-C17 1548.1 (2.1) 0.9 (20.8) 0.92 17.1 C16 6.9 (1.5) 0.9 (17.3) 0.91 6.0 

C18 156.1 (1.4) 0.9 (15.2) 0.86 12.4 C17 6.1 (1.6) 0.9 (20.6) 0.93 5.3 

C19-C22 563.8 (1.5) 1.0 (35.8) 0.97 16.0 C18 −0.0 (−0.0) 1.0 (11.8) 0.82 6.4 

C23 300.5 (1.8) 0.9 (12.6) 0.81 13.6 C19 4.9 (1.0) 1.0 (14.3) 0.87 6.1 

C24 589.1 (1.9) 0.9 (20.2) 0.92 15.9 C20-C21 3.1 (1.9) 1.0 (44.6) 0.99 5.0 

C25 342.3 (1.7) 0.9 (22.3) 0.93 15.4 C22 11.0 (1.9) 0.9 (13.4) 0.86 6.3 

C26-27 628.8 (1.4) 1.0 (25.9) 0.95 18.1 C23 5.4 (0.7) 0.9 (9.4) 0.74 6.7 

C28 649.9 (1.3) 1.0 (19.1) 0.91 16.9 C24 20.5 (2.2) 0.8 (7.8) 0.66 7.2 

C29-C30 931.2 (2.4) 0.7 (6.0) 0.48 14.5 C25 14.4 (2.3) 0.9 (12.1) 0.83 6.9 

C31-C32 175.4 (1.4) 0.9 (15.3) 0.86 12.9 C26 2.9 (1.6) 1.0 (29.2) 0.97 6.6 

C33 269.4 (1.9) 0.9 (14.2) 0.84 13.4 C27 7.0 (1.1) 0.9 (12.8) 0.85 6.4 

     C28 9.7 (1.3) 0.9 (10.4) 0.78 7.6 

     C29 9.7 (1.6) 0.9 (12.5) 0.84 8.0 

     C30 17.3 (1.7) 0.8 (7.5) 0.65 6.2 

     C31-C32 4.8 (1.7) 1.0 (26.3) 0.96 5.8 

     C33 5.8 (1.3) 0.9 (17.0) 0.91 6.2 

 

 

Table 2 indicates that in Finland only industries C16-C17 and  

C29-C30, and in Sweden only industries C24 and C25 have a linear time 

trend in annual flows of production. Thus in most cases the time paths in 

production volumes originate from external sources and they must be 

explained by economic theories. The FDE explains the industrial flows of 

production relatively well, and next we test whether economic theories can 

better these results. Otherwise the conclusion is that annual productions are 

approximately equal as in previous year, and then economic theories are 

useless in explaining changes in annual flows of production. 
 

4. The neoclassical and the Newtonian theory of production 

 
In the following we assume that the external source that affects the 

annual flows of production together with their own history is the price of 

the produced good. Industrial flows of production are modeled by 

assuming that an industry operates like a representative firm that produces 

the whole production in the industry under perfect competition. A more 

detailed description of industrial productions can be made in the future, but 
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here we do not study differences in competition situations within industries 

and interdependencies between industries.  

The profit function of a representative firm i in a perfectly competed 

industry is assumed as follows 
 

                               Π𝑖(𝑡) = 𝑝𝑖(𝑡)𝑞𝑖(𝑡) − 𝐶𝑖(𝑞𝑖(𝑡), 𝑡),      𝑖 = 1, … , 𝑛,   (3) 
 

where Π𝑖(€/𝑦) is the annual profit of the firm, 𝑝𝑖(€/𝑢𝑛𝑖𝑡) the price of the 

product of the firm, 𝑞𝑖(𝑢𝑛𝑖𝑡/𝑦)  the annual flow of production of the firm, 

and 𝐶𝑖(€/𝑦)  the cost function of the firm; by 𝑦 is denoted year. The 

following cost function is assumed for firm i 
 

                          𝐶𝑖(𝑞𝑖(𝑡), 𝑡) = 𝑐𝑖0 + 𝑐𝑖1𝑞𝑖(𝑡) +
1

2
𝑐𝑖2𝑞𝑖

2(𝑡) − 𝑐𝑖3𝑡𝑞𝑖(𝑡),    (4) 
 

where 𝑐𝑖𝑗 , 𝑗 = 0, … ,3 are dimensional parameters; the last term describes 

decreasing costs with time due to technical development. In the 

neoclassical theory, the time passage is omitted (i.e. 𝑡 = 0 is assumed in 

Eq. (4)) and the testable function for the neoclassical theory is 
 

                  
 𝜕Π𝑖

𝜕𝑞𝑖
= 0    ⇔    𝑝𝑖(𝑡) = 𝐶𝑖

′(𝑞𝑖(𝑡))    ⇔   𝑞𝑖(𝑡) = −
𝑐𝑖1

𝑐𝑖2
+

1

𝑐𝑖2
𝑝𝑖(𝑡).         (5) 

 

In Newtonian theory, the time passage is explicitly modeled and the 

following model is estimated for industrial prices  
 

                𝑝𝑖(𝑡) = 𝑎𝑖0 + 𝑎𝑖1𝑡 + 𝑎𝑖2 sin(𝑏𝑖0𝑡 + 𝑏𝑖1) + 𝑎𝑖3 sin(𝑏𝑖2𝑡 + 𝑏𝑖3) ,   (6) 
 

where 𝑎𝑖𝑗 , 𝑏𝑖𝑘 , 𝑗, 𝑘 = 0, … ,3 are dimensional parameters to be estimated. 

The first sine-function describes normal business cycles with frequency 

and phase parameters 𝑏𝑖0, 𝑏𝑖1, respectively, and the second sine-function 

represents possible longer term cycles. A linear time trend exists in 𝑝𝑖(𝑡) if 
𝑎𝑖1 ≠ 0.  

Substituting Eqs. (4) and (6) in Eq. (3), we get the marginal profit 

function of firm i as 

𝜕Π𝑖

𝜕𝑞𝑖
= (𝑎𝑖0 − 𝑐𝑖1) − 𝑐𝑖2𝑞𝑖(𝑡) + (𝑎𝑖1 + 𝑐𝑖3)𝑡 + 

                                            + 𝑎𝑖2 sin(𝑏𝑖0 + 𝑏𝑖1𝑡) + 𝑎𝑖3 sin(𝑏𝑖2 + 𝑏𝑖3𝑡).  (7) 
 

The Newtonian equation of production of a profit-seeking firm is  

(see [13]) 

𝑚𝑖𝑞𝑖
′(𝑡) =

 𝜕Π𝑖

𝜕𝑞𝑖
  ⇔   𝑚𝑖𝑞𝑖

′(𝑡)=𝑧𝑖0 − 𝑐𝑖2𝑞𝑖(𝑡) + 

                                  +𝑧𝑖1𝑡 + 𝑎𝑖2 sin(𝑏𝑖0 + 𝑏𝑖1𝑡) + 𝑎𝑖3 sin(𝑏𝑖2 + 𝑏𝑖3𝑡),   (8) 
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where 𝑧𝑖0 = 𝑎𝑖0 − 𝑐𝑖1, 𝑧𝑖1 = 𝑎𝑖1 + 𝑐𝑖3 and 𝑚𝑖  with unit € × 𝑦2 𝑢𝑛𝑖𝑡2 ⁄  

represents the inertia (“mass”) of production. Now, 𝜕Π𝑖 𝜕𝑞𝑖⁄  with unit 

€/𝑢𝑛𝑖𝑡 is the reason (“force”) that causes the acceleration in production, 

𝑞𝑖
′ (𝑡)(𝑢𝑛𝑖𝑡 𝑦2⁄ ), of the profit-seeking firm. The solution of Eq. (8) is  

(see [13]) 
 

                     𝑞𝑖(𝑡) = 𝐵𝑖0 + 𝐵𝑖1𝑡 

                                + 𝐵𝑖2 sin(𝑏𝑖2𝑡) +𝐵𝑖3 cos(𝑏𝑖2𝑡) + 𝐵𝑖4 sin(𝑏𝑖0𝑡 + 𝑏𝑖1) 

                                + 𝐵𝑖5 cos(𝑏𝑖0𝑡 + 𝑏𝑖1) + 𝐵𝑖6𝑒
−

𝑐𝑖2
𝑚𝑖

𝑡
, (9) 

 

where 𝐵𝑖𝑗 , 𝑏𝑖𝑘, 𝑗 = 0, … ,6, 𝑘 = 0, … ,2 are dimensional parameters to be 

estimated. 
 

 

5. Empirical results 

We compare empirically the neo-classical theory in Eq. (5) with the 

Newtonian one in Eq. (9), and these both are compared to the FDE in Eq.(1). 

Only statistically significant parameter estimates are reported in Tables 3-

8, and the absolute values of pairwise correlations between explaining 

variables in any model are not allowed to exceed 0.5. The estimated 

models for industrial prices in Tables 3, 4, show that Eq. (6) works quite 

well for all industries in both countries. A linear or a more complicated 

time trend exists in every price, and Eq. (6) explains over 91% of price 

variation in Swedish industries and over 84% in Finnish industries. The 

Breusch-Godfrey serial correlation LM test statistic shows positive 

autocorrelation in residuals of all Finnish industries and in most Swedish 

industries too. This problem is not analyzed here further because the focus 

in this paper is in explaining industrial productions and not prices.  



14 

 

Table 3.  

The estimated models for Finnish industrial prices. 

 

Table 4.  

The estimated models for Swedish industrial prices. 

 

Industry 
Constant 

(T-test) 

Time 

(T-test) 
sin(𝑏𝑖0𝑡 + 𝑏𝑖1) 

(T-test) 
sin(𝑏𝑖2𝑡 + 𝑏𝑖3) 

(T-test) 

Adj. 

𝑅2 

B-G, 

F- prob. 

C10-C12 −13.3 (−11.8) 0.0 (12.4)  0.2 (12.1) 0.1 (15.5) 0.95 0.00 

C13-C15  −0.7(−27.8)  0.0 (3.9) −1.7 (−60.0) 0.99 0.00 

C16-C17 −29.3 (−17.4) 0.0 (17.8) 0.1 (3.9) −0.0 (−2.8) 0.91 0.00 

C18 −33.4 (−38.3) 0.0 (38.1) −0.4 (−12.4)  0.99 0.00 

C19-C22 0.5 (46.3)  −0.1 (−9.4) −6.6(−24.2) 0.94 0.01 

C23 5.3 (46. 2)  8.2 (40.1)  0.98 0.00 

C24 −30.8(−13.2) 0.0 (13.5)  0.1 (2.9)  0.84 0.00 

C25 −40.7 (−53.9) 0.0(54.8)    0.99 0.00 

C26-C27 1.3(80.8)  0.4 (17. 9)  0.89 0.00 

C28 −46.0 (−54.2) 0.0 (54.9)    0.99 0.00 

C29-C30 21.8 (37. 5)  −0.0 (−2.1) 23.0 (36.4)  0.97 0.00 

C31-C32  −42.0 (−84.8) 0.0 (86.2)   0.99 0.00 

C33 −47.0 (−84.4) 0.0(85.6)   0.99 0.00 

Industry 
Constant 

(T-test) 

Time 

(T-test) 

sin(𝑏𝑖0𝑡 + 𝑏𝑖1) 

(T-test) 

sin(𝑏𝑖2𝑡 + 𝑏𝑖3) 

(T-test) 

Adj.

 𝑅2 

B-G, 

F-prob. 

C10-C12 1.4 (27.8)  1.2 (17.3)  0.91  0.00 

C13-C15  −102.7 (−85.5)  103.9 (86.4)  0.99 0.10 

C16 −113.9 (−23.5) 0.06 (24.1) 0.2 (6.0)  0.95 0.07 

C17 −120.4 (−17.3) 0.1 (17.7) −0.1 (−3.2) 0.4 (5.4) 0.91  0.17 

C18 −499.5  (−25.6)  503.7 (25.6)  0.95 0.00 

C19 5.4 (38. 2)  −0.3 (−3.0) 4.0 (21.1) 0.94 0.23 

C20-C21 −238.1 (−29.2) 0.1 (29.9)  0.3 (5.4)  0.97 0.00 

C22 −179.5 (−39.6) 0.1 (40.3)  0.1 (4.3)  0.98 0.00 

C23 −175.0 (−84.9) 0.1 (86.2)  −0.2 (−8.2)  0.99 0.00 

C24 −169.6 (−13.4) 0.1 (15.0)  0.2 (2.7) 10.2 (5.9) 0.92 0.00 

C25 −292.7 (−68.2) 0.1 (69.3)   0.99 0.00 

C26  −77.4 (−36.6)  −104.4 (−46.0) −3.4 (−15.7) 0.99 0.02 

C27 −139.7 (−46.2) 0.1 (47.1) −0.3 (−8.7)  0.99 0.00 

C28 −164.0 (−51.9) 0.1 (52.9) 0.2 (8.2)  0.99 0.00 

C29 −232.5 (−35.6) 0.1 (36.4) −0.7 (−15.3)  0.98 0.00 

C30 −180.1 (−58.3) 0.1 (59.1) −0.1 (−3.0)  0.99 0.00 

C31-C32 −243.7 (−66.2) 0.1 (67.5) −0.6 (−15.7)  0.99 0.00 

C33 −193.6 (−71.6) 0.1 (72.8) 0.2 (9.2)  0.99 0.02 
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The estimated frequency and phase parameters of the sine-functions of 

all models are in the Appendix. The neoclassical models for industrial flows 

of production in Finland and in Sweden are in Tables 5 and 7 and the 

corresponding Newtonian models in Tables 6 and 8. According to adjusted 

𝑅2 and Akaike info criterion, by pairwise comparison the Newtonian 

models are all better than the corresponding neoclassical ones for industrial 

flows of production. In Finland, price has a statistically significant effect in 

all other neoclassical models except in industry C29-C30, but in industries 

C13-C15 and C26-C27, the parameter estimate is significantly negative. 

Thus, in these industries the theory does not work properly. The 

neoclassical models are, however, not accurate especially in industries 

C26-C27 and C29-C30 where the models explain only roughly 5% of 

observed variation. The Newtonian models work quite well in all other 

Finnish industries except in C18 and in C29-C30 where roughly 60% of 

observed variation is explained. 
 

Table 5.  

The neoclassical models for Finnish industries 

Industry Constant (T-test) 𝑝𝑖𝑡(T-test) 𝐴𝑑𝑗. 𝑅2 Akaike criterion  B-G, F-prob. 

C10-C12 3389.2 (3.5) 5659.6 (5.3) 0.42 17.0  0.00 

C13-C15 4603.8 (22.4) −3208.6 (−12.5) 0.80 14.6  0.00 

C16-C17 −1304.9(−1.0) 21778.4 (13.5) 0.83 18.0  0.00 

C18 1308.5 (8.8) 668.1 (3.4) 0.22 14.2  0.00 

C19-C22 3529.2 (3.6) 15328.9 (10.7) 0.75 18.3  0.00 

C23 1078.0 (7.5) 1835.3 (9.4) 0.70 14.1  0.00 

C24 −293.4 (−0.4) 9381.7 (8.3) 0.64 17.4  0.00 

C25 −1277.0 (−4.6) 7930.4 (21.2) 0.92 15.5  0.00 

C26-C27 19883.0 (3.2) −8320.4 (−1.9) 0.06 21.0  0.00 

C28 874.6 (1.4) 12691.8 (14.2) 0.84 17.5  0.00 

C29-C30 2910.9 (13.6) 462.7 (1.6) 0.04 15.1  0.00 

C31-C32 1453.8 (8.4) 873.9 (3.7) 0.25 14.7  0.00 

C33 1128.5 (12.8) 1691.3 (13.6) 0.83 13.6  0.00 
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Table 6. 

The Newtonian models for Finnish industries. 

 

Table 7. 

The neoclassical models for Swedish industries. 

Industry Constant (T-test) 𝑝𝑖𝑡 (T-test) Adj. 𝑅2 Akaike criterion  B-G, F-prob. 

C10-C12 79.3 (30.5) 7.1 (6.2) 0.55 5.1  0.00 

C13-C15 286.4 (33.0) −144.5 

(−16.9) 

0.90 7.7  0.00 

C16 25.7 (3.0) 21.4 (7.2) 0.62 7.5  0.00 

C17 24.7 (4.0) 20.0 (9.7) 0.75 6.7  0.00 

C18 146.7 (23.8) −13.8 (−5.0) 0.43 7.5  0.00 

C19 53.1 (15.2) 8.2 (7.1) 0.62 7.3  0.00 

C20-C21 −31.0 (−3.9) 20.3 (13.1) 0.85 7.4  0.00 

C22 43.1 (7.1) 13.6 (7.8) 0.66 7.2  0.00 

C23 64.4 (8.6) 6.1 (2.4) 0.13 7.8  0.00 

C24 64.9 (10.4) 9.6 (4.7) 0.41 7.8  0.00 

Industry 
Constant 

(T-test) 

Time 

(T-test) 

sin(𝑏𝑖2𝑡)  
(T-test) 

cos(𝑏𝑖2𝑡) 
(T-test) 

sin(𝑏𝑖0𝑡 + 𝑏𝑖1) 
(T-test) 

cos(𝑏𝑖0𝑡 + 𝑏𝑖1) (T-test) 
Adj.𝑅2

 
Akaike 

criterion 

B-G, 

F, prob. 

C10-C12 −249152.2  

(−50.2) 

129.2 

(51.9) 

 −172.6 (−4.3)  

 

0.99  

 

13.2 0.01 

C13-C15  131805.1  

(24.2) 

−65.1 

(−23.8) 

 −300.8 (−6.6) 

−217.3 (−5.0) 

0.94 13.4 0.00 

C16-C17 −671619.0  

(−21.4) 

344.7 

(21.8) 

 

 

1921.0(7.1) 

−545.8 (−2.2) 

0.95 16.7 0.03 

C18 −13795.5 

 (−2.3) 

7.8 

(2.7) 

 

 

−299.9 (−6.6) 

 

0.57  

 

13.6 0.00 

C19-C22 11107.6 

 (92.8) 

 

 

 

−2199.9(−14.3) 

6897.3 (40.4) 0.98 15.9 0.19 

C23 −61693.4  

 (−9.7) 

32.1 

(10.1) 

 −225.1 (−4.8) 

−207.9 (−4.1)  

0.83 13.6 0.00 

C24 −411073.4  

(−23.3) 

209.3 

(23.7)  

 

−994.8 (−6.6) 

− 867.9 (−6.0) 0.94 15.7 0.72 

C25 −332281.3  

 (−23.1) 

168.8 

(23.4) 

305.5 (2.7)  

−468.3 (−3.9) 

0.94 15.4 0.00 

C26-C27 −1404851.0 

 (−19.5) 

708.6 

(19.6)  

−3090.9 (−5.4) 

 

−2263.4  (−3.8) 

 

0.92 18.6 0.00 

C28 −588035.7 

 (−19.3) 

299.4 

(19.6)   

−954.8 (−3.7) 668.9 (2.8) 0.92 16.9 0.00 

C29-C30 −19212.0 

 (−2.4) 

11.3 

(2.8) 

−410.8 (−6.6) 

 

−254.9 (−4.1) 

−194.7 (−3.0) 

0.64 14.2 0.01 

C31-C32 2015.4 

(84.9) 

 318.8 (8.4) 

−282.4 (−9.7) 

92.2 (2.8) 

−260.3 (−8.1) 

0.89 12.8 0.00 

C33 −78179.0 

(−14.9) 

40.3 

(15.3) 

 

−100.3 (−2.4) 

 

−137.4 (−3.3) 

0.87 13.4 0.87 
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C25 32.7 (5.7) 11.8 (9.9) 0.76 7.4  0.00 

C26  130.5 (25.6) −4.5 (−18.6) 0.92 7.5  0.00 

C27 48.0 (5.9) 15.0 (5.1) 0.44 7.7  0.00 

C28 11.3 (1.2) 22.2 (7.5) 0.64 8.0  0.00 

C29 −25.5 (−1.4) 19.3 (5.9) 0.52 9.1  0.00 

C30 76.7 (20.0)  6.3 (4.4) 0.37 6.8  0.00 

C31-C32 −8.2 (−1.2) 18.4 (12.2) 0.83 7.3  0.00 

C33 27.7 (4.4) 15.5 (8.7) 0.71 7.3  0.00 
 

Table 8. 

The Newtonian models for Swedish industries. 

 

Industry 
Constant 

(T-test) 

Time 

(T-test) 

sin(𝑏𝑖2𝑡)  
(T-test) 

cos(𝑏𝑖2𝑡)  
(T-test) 

sin(𝑏𝑖0𝑡 + 𝑏𝑖1)  
(T-test) 

cos(𝑏𝑖0𝑡 + 𝑏𝑖1)  
(T-test) 

Adj. 

𝑅2 

Akaike  
criterion 

B-G, 

F-prob. 

C10-C12 −737.7 

(−10.8) 

0.4  

(12.2) 
−1.1 (−2.4)  

1.2  (2.6) 

0.83  

 

4.12 0.00 

C13-C15  7034.3  
(29.8) 

−3.5  
(−29.2) 

−12.7 (−8.2) 
 

−4.2 (−2.7) 
3.6 (2.3) 

0.97 6.6 0.11 

C16 −3206.1 

(−21.6) 

1.6  
(22.1) 

−2.3 (−2.5) 

−9.5 (−9.8) 

−3.7 (−3.9) 
1.9 (2.2) 

0.95 5.6 0.02 

C17 −2848.9 

(−27.5) 

1.5  

(28.3) 

 

−2.3 (−2.5) 

−5.5 (−6.0) 

 

0.97  

 

4.7 0.59 

C18 1551.3  
(8.0) 

−0.7  
(−7.4) 

−9.5 (−7.7) 3.8 (3.6) 
4.6 (4.6) 

0.91 5.8 0.11 

C19 − 2781.0 

(−22.3) 

1.4  

(22.9) 

 1.7 (2.2) 

3.2 (3.9)  

0.95 5.3 0.24 

C20-C21 65.8  
(36.2) 

 −7.6(−3.5) 

−41.4 (−66.0) 

 
6.0 (11.2) 

0.99 4.3 0.01 

C22 − 3082.7 

(−15.3) 

1.6  

(15.7)  

8.9 (6.6) −4.6 (−3.6) 

 

0.89 6.2 0.15 

C23 −1217.3 

(−5.9) 

0.6  
(6.3)  

 
13.3 (10.2) 

−3.8 (−2.9) 

−3.1 (−2.3) 

0.83 6.3 0.00 

C24 64.6  

(22.7) 

 

 

 

7.5 (4.2) 

 

39.5 (10.7) 

0.80 6.8 0.29 

C25 −3827.9 

(−11.9) 

2.0  
(12.2) 

 5.3 (2.7) 
5.4 (2.6) 

0.83 7.0 0.00 

C26  −7341.4 

(−28.1) 

3.7  

(28.3) 

4.6 (2.8) 

4.8 (3.0) 

−5.0 (−2.9) 

8.1 (4.7) 

0.96 6.8 0.00 

C27 −2708.9 

(−12.8) 

1.4  
(13.2) 

 
 

10.3 (7.2) 
− 5.2(−3.9) 

0.87 6.3 0.01 

C28 −4231.0 

(−12.7) 

2.2  

(12.9) 

 −9.6 (−4.2) 0.85 7.2 0.01 

C29 −6664.7 

(−15.0) 

3.4  
(15.2) 

 −9.4 (−3.2) 
14.7 (5.3) 

0.89 7.7 0.04 

C30 92.5  

(137.5) 

 −7.7(−8.0) 
7.4 (7.8) 

3.3 (3.4) 0.81 5.6 0.14 

C31-C32 66.2  

(12.4) 

 3.7 (4.0) 

−5.8 (−5.8) 

−12.8 (−2.1) 

−44.8 (−29.2) 

0.97 5.6 0.04 

C33 −3043.9 

(−13.7) 

1.6  

(14.0) 

 5.5 (3.6) 

−6.3 (−4.3) 

0.88 6.5 0.00 
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In Finland, we obtained a statistically significant parameter for price in 

all other neoclassical models except in industry C29-C30, but in industries 

C13-C15 and C26-C27, the parameter estimate is significantly negative. Thus, 

in these industries the theory does not work properly. The neoclassical models 

are, however, not accurate especially in industries C26-C27 and C29-C30 

where the models explain only roughly 5 % of observed variation. The 

Newtonian models are quite accurate in all other Finnish industries except in 

C18 and in C29-C30, where only roughly 60 % of observed variation is 

explained by the models. 

In the case of Sweden, in all estimated neoclassical models a 

statistically significant estimate for price is obtained, but in industries  

C13-C15, C18, and C26, the estimate is significantly negative. On the 

average the neoclassical theory works better in Sweden than in Finland, 

and only in industry C23 in Sweden the model works badly, i.e. adjusted 

𝑅2 = 0.13. In terms of adjusted 𝑅2, in Sweden, however, in the best 

neoclassical models a negative parameter estimate is obtained for price. 

This further questions the empirical performance of the neoclassical 

theory. The Newtonian models are quite good for all Swedish industries, 

and in no industry less than 81 % of observed variation in production flows 

is explained by the models. One further advantage of the estimated 

Newtonian models as compared with the neo-classical ones is that the former 

can be used in forecasting simply by increasing time in the models. Using the 

neoclassical models in forecasting, on the other hand, industrial prices must be 

forecasted as well.  

According to the Breusch-Godfrey serial correlation LM test statistic, 

positive autocorrelation problem exists in the residuals of all estimated 

functions. This shows that the estimated functional forms do not follow the 

observed data accurately enough. The autocorrelation problem is worse in 

the neoclassical than in the Newtonian models, however. This implies that 

there is room to better the obtained results. Two best neoclassical models 

for both countries are graphed in Figures 1, 3, 5, and 7, and the 

corresponding Newtonian ones in Figures 2, 4, 6, and 8.   
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6. Conclusions 

We tested a Newtonian type of model for industrial flows of production 

against the neoclassical one, and these both were compared to the first order 

difference equation (FDE). Our observation is that the Newtonian theory and 

FDE outperform the neoclassical one in every industry in both countries, 

Finland and Sweden. In pairwise comparisons, the Newtonian theory is better 

than FDE in 24 cases of 31. These results imply that the neoclassical theory is 

not flexible enough to explain the industrial flows of production, and at worst 

it can explain only 4 % of observed variation of annual production in one 

industry. The Newtonian theory is more flexible, and at worst it can explain  

57 % of observed variation in annual production in one industry.  

Most of the estimated models were shown to have positive 

autocorrelation problem in residuals. This implies that more accurate 

functional forms can be found. In the neoclassical theory, however, there are 

no means to improve it. Game theory, on the other hand, could be useful in 

creating models where interdependencies between firms’ productions are 

incorporated. In estimating this kind of models, however, firm level production 

data would be required, which is seldom available. On the other hand, 

interdependencies between industries may be modeled by taking account 

possible input-output -relations between industries. It would be interesting if 

similar tests as we made here are repeated with quarterly or monthly data, or 

with different countries and different levels of aggregation. 

APPENDIX 

  

Figure 1. The neoclassical model for C28                   Figure 2. The Newtonian model for C28 

      in Finland.                                                              in Finland. 
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Figure 3. The neoclassical model for C25                  Figure 4. The Newtonian model for C25 

              in Finland.                                                                in Finland. 

  

Figure 5. The neoclassical model for C31-C32            Figure 6. The Newtonian model for C31-C32 

          in Sweden.                                                                            in Sweden. 

     

Figure 7. The neoclassical model for C20-C21      Figure 8. The Newtonian model for C20-C21 

             in Sweden.                                                               in Sweden. 
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The estimated frequency and phase parameters of the sine-functions in models for industrial 

prices in Finland are: 𝑏𝐶10𝐶120 = −18.77, 𝑏𝐶10𝐶121 = 0, 𝑏𝐶10𝐶122 = 0.2693, 𝑏𝐶10𝐶123 = 0, 𝑏𝐶13𝐶150 =

0.021, 𝑏𝐶13𝐶151 = −0.009, 𝑏𝐶13𝐶152 = −94.7, 𝑏𝐶13𝐶153 = 0.05,  𝑏𝐶16𝐶170 = −728.49, 𝑏𝐶16𝐶171 =

0.36, 𝑏𝐶16𝐶172 = 427.66, 𝑏𝐶16𝐶173 = −0.21,  𝑏𝐶180 = −18.8, 𝑏𝐶181 = 0, 𝑏𝐶19𝐶220 = 4429.44, 

𝑏𝐶19𝐶221 = −2.2,  𝑏𝐶19𝐶222 = −0.00318, 𝑏𝐶19𝐶223 = 0.04, 𝑏𝐶230 = −0.00296, 𝑏𝐶231 = −5840,𝑏𝐶240 =

483.34, 𝑏𝐶241 = 0.01, 𝑏𝐶26𝐶270 = 0.1504, 𝑏𝐶26𝐶271 = 141.6, 𝑏𝐶29𝐶300 = 24.478, 𝑏𝐶29𝐶301 = 0, 

𝑏𝐶29𝐶302 = 0.00235, 𝑏𝐶29𝐶303 = 13. 

The frequency and phase parameters of the sine-functions in models for industrial prices in 

Sweden are: 𝑏𝐶10𝐶120 = 0.06, 𝑏𝐶10𝐶121 = 0.43, 𝑏𝐶13𝐶150 = 0.0039, 𝑏𝐶13𝐶151 = 0.01, 𝑏𝐶160 =

−107.11, 𝑏𝐶161 = 0.05, 𝑏𝐶170 = −130.88, 𝑏𝐶171 = 0.07,𝑏𝐶172 = −106.7, 𝑏𝐶173 = 0.05,𝑏𝐶180 =

−0.0015, 𝑏𝐶181 = −498, 𝑏𝐶190 = 5.095, 𝑏𝐶191 = 0,𝑏𝐶192 = −0.08127, 𝑏𝐶193 = 3.2, 𝑏𝐶20𝐶210 = 0.2, 

𝑏𝐶20𝐶211 = 0.01,𝑏𝐶220 = 0.31, 𝑏𝐶221 = 0.315, 𝑏𝐶230 = 0.125, 𝑏𝐶231 = 0.125,𝑏𝐶240 = 332.59, 𝑏𝐶241 =

−0.16, 𝑏𝐶242 = 0.029, 𝑏𝐶243 = −2.9, 𝑏𝐶260 = 1445.11, 𝑏𝐶261 = −0.71, 𝑏𝐶262 = 0.2988, 𝑏𝐶263 =

−1564, 𝑏𝐶270 = −138.3568, 𝑏𝐶271 = 0.07, 𝑏𝐶280 = 0.268, 𝑏𝐶281 = 13.38,𝑏𝐶290 = 0.188, 𝑏𝐶291 =

0.06, 𝑏𝐶300 = −200.71, 𝑏𝐶301 = 0.1, 𝑏𝐶31𝐶320 = 0.1121, 𝑏𝐶31𝐶321 = −5.2, 𝑏𝐶330 = −590.37, 

𝑏𝐶331 = 0.29. 

The estimated frequency and phase parameters of the sine-functions in Newtonian models for 

production flows in Finland are: 𝑏𝐶10𝐶120 = −248675.6, 𝑏𝐶10𝐶121 = 128.7, 𝑏𝐶13𝐶150 = 129125.5, 

𝑏𝐶13𝐶151 = −64,  𝑏𝐶16𝐶170 = −648946.5, 𝑏𝐶16𝐶171 = 333, 𝑏𝐶16𝐶172 = 798253.4, 𝑏𝐶180 =

−6911.7, 𝑏𝐶181 = 0.15, 𝑏𝐶19𝐶220 = −733605.8, 𝑏𝐶19𝐶221 = 37, 𝑏𝐶19𝐶222 = −56.7,𝑏𝐶230 =

−69008.6, 𝑏𝐶231 = 35.2, 𝑏𝐶240 = −380314.8, 𝑏𝐶241 = 19, 𝑏𝐶242 = 245.3, 𝑏𝐶250 = −325117.4, 

𝑏𝐶251 = 16, 𝑏𝐶252 = −329923,   𝑏𝐶26𝐶270 = −1279733.8, 𝑏𝐶26𝐶271 = 64, 𝑏𝐶26𝐶272 = 396.0, 𝑏𝐶280 =

 −598731.7, 𝑏𝐶281 = 303.4, 𝑏𝐶282 = −601319.4, 𝑏𝐶29𝐶300 = −13491.0,  𝑏𝐶29𝐶301 = 8.2, 𝑏𝐶29𝐶302 =

43.6, 𝑏𝐶31𝐶320 = −32760.9, 𝑏𝐶31𝐶321 = 17.4, 𝑏𝐶31𝐶322 = −37.6,  𝑏𝐶330 = −74632.6, 𝑏𝐶331 =

3, 𝑏𝐶332 = −79676.6. 

The estimated frequency and phase parameters of the sine-functions in Newtonian models 

for production flows in Sweden are: 𝑏𝐶10𝐶120 = −734.5, 𝑏𝐶10𝐶121 = 0.01,𝑏𝐶10𝐶122 = 1.1, 𝑏𝐶13𝐶150 =

7358.1, 𝑏𝐶13𝐶151 = −3.6, 𝑏𝐶13𝐶152 = −0.3, 𝑏𝐶160 = −3104.7, 𝑏𝐶161 = 1.6, 𝑏𝐶162 = −0.3, 𝑏𝐶170 =

−2707.7, 𝑏𝐶171 = 1.4, 𝑏𝐶172 = −0.3, 𝑏𝐶180 = 1577.7,𝑏𝐶181 = −0.7,𝑏𝐶182 = −0.2,𝑏𝐶190 = 1551.4, 

𝑏𝐶191 = −0.7, 𝑏𝐶20𝐶210 = 10982.7,
 

 𝑏𝐶20𝐶211
= −5, 𝑏𝐶20𝐶212 = −0.1, 𝑏𝐶220 = −2558, 𝑏𝐶221 =

1,𝑏𝐶222 = −0.4, 𝑏𝐶230 = −1130.4, 𝑏𝐶231 = 0.6, 𝑏𝐶232 = 0.3,𝑏𝐶240 = −2626.3, 𝑏𝐶241 = 1.3, 𝑏𝐶242 =

−0.3, 𝑏𝐶250 = −3442.8, 𝑏𝐶251 = 1.7, 𝑏𝐶260 = −7018, 𝑏𝐶261 = 3.5, 𝑏𝐶262 = 0.7, 𝑏𝐶270 =

42662.5,  𝑏𝐶271 = −25, 𝑏𝐶280 = −4009, 𝑏𝐶281 = 2, 𝑏𝐶290 = −5843.7, 𝑏𝐶291 = 3.5, 𝑏𝐶300 = 13068.4, 

𝑏𝐶301 = −5, 𝑏𝐶302 = 0.2, 𝑏𝐶31𝐶320 = −4467.4,  𝑏𝐶31𝐶321 = 2, 𝑏𝐶31𝐶322 = 0.3, 𝑏𝐶330 = −3147.6, 

𝑏𝐶331 = 2.5. 
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