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GAUSSIAN AND NON-GAUSSIAN MODELS  

FOR FINANCIAL BUBBLES VIA ECONOPHYSICS 

John FRY
* 

Abstract. We develop a rational expectations model of financial bubbles and 

study how the risk-return interplay is incorporated into prices. We retain the 
interpretation of the leading Johansen-Ledoit-Sornette model: namely, that 

the price must rise prior to a crash in order to compensate a representative 
investor for the level of risk. This is accompanied, in our stochastic model, 

by an illusion of certainty as described by a decreasing volatility function. 

As the volatility function decreases crashes can be explicitly seen to 
represent a phase transition from stochastic to deterministic behaviour in 

prices. Our approach is first illustrated by a benchmark Gaussian model, 
which we subsequently extend to a heavy-tailed model based on the Normal 

Inverse Gaussian distribution in order to provide a better fit to empirical 

financial data. Our model is illustrated by an empirical application to the 

London Stock Exchange. Results suggest that the aftermath of the Bank of 

England's process of quantitative easing has coincided with a bubble in the 

FTSE 100. 

Keywords: financial crashes, super-exponential growth, illusion of certainty, 

heavy tails, bubbles. 

 

1. Introduction 

Rational expectations models were introduced with the work of 

Blanchard and Watson to account for the possibility that prices may 

deviate from fundamental levels [1]. We take as our main starting point the 

somewhat controversial subject of log-periodic precursors to financial 

crashes [2-11], with a fundamental aim of our approach being relatively 

easy calibration of our model to empirical data. Additional background on 

log-periodicity and complex exponents can be found in [12]. A first-order 

approach in [3] and subsequent extensions in [13] state that prior to a crash 

the price must exhibit a super-exponential growth in order to compensate a 

representative investor for the level of risk. However, this approach 

concentrates solely on the drift function and ignores the underlying 
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volatility fluctuations which typically dominate financial time series [14]. 

We undertake a similar approach to that in [3] but extend the original 

method by deriving a second-order condition which incorporates volatility 

fluctuations and enables us to combine insights from a rational expecta-

tions model with a stochastic model [15-16]. 

Our model gives two important characterisations of bubbles in econo-

mics. Firstly, a rapid super-exponential growth in prices. Secondly, an 

illusion of certainty as described by a decreasing volatility function prior to 

the crash. As the volatility function goes to zero bubbles and crashes can 

be seen to represent a phase transition from stochastic to purely deter-

ministic behaviour in prices. This clarifies the oft cited link in the literature 

between phase transitions in critical phenomena and financial crashes. 

Further, this recreates the phenomenology of the Sornette-Johansen 

paradigm: namely that prices resemble a deterministic function prior to a 

crash. We explore a number of different applications of our model and the 

potential relevance to recent events is striking. 

The layout of this paper is as follows. In Section 2 we introduce a 

benchmark Gaussian model. In Section 3 we extend the basic model to a 

heavy-tailed setting in order to account for leptokurtosis in financial 

returns. Section 4 gives an empirical application. Section 5 is a conclusion. 

A probability Appendix, included for the reader's convenience, can be 

found at the end of the paper.  

2. Motivation: a simple Gaussian model 

In this section we derive and solve a Gaussian model for financial 

bubbles, our approach later serving to motivate a non-Gaussian model in 

Section 3. An alternative formulation of the model in [3] leads naturally to 

a stochastic generalisation of the original model as follows. Let P(t) denote 

the price of an asset at time t. Our starting point is the equation: 

 ,)1)(()( )(
1

tjtPtP   (1) 

where P1(t) satisfies: 

 tdWtPtdttPttdP )()()()()( 111 ,  (2) 

where Wt is a Wiener process and j(t) is a jump process satisfying the 

condition j(t) = 0 before a crash and the condition j(t) =1 afterwards. When 

a crash occurs % is automatically wiped off the value of the asset. Prior 

to a crash P(t)=P1(t) and Xt= log(P(t)) satisfies: 

 ),(d]1ln[d)(d)(~ tjWtttdX tt   (3) 
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where .2/)()()(~ 2 ttt  If a crash has not occurred by time t, we  

have that: 

 ),d(d)()]()d([ totthtjttjE   (4) 

and 

 ),d(d)()]()d([ totthtjttjVar  (5) 

where h(t) is the hazard rate. We compare (3) with the prototypical Black-

Scholes model for an asset price: 

 ,~
tt dWdtdX   (6) 

where ,2/)(~ 2t  and use (6) as our model for “fundamental” or 

purely stochastic behaviour in prices. 

The first-order condition, see e.g. [1], [3], suggests that )(~ t  in (3) 

grows in order to compensate a representative investor for the risk 

associated with a crash. The instantaneous drift associated with (3) is: 

 ).(]1ln[)(~ tht   (7) 

For (6) the instantaneous drift is .~  Setting (7) equal to ,~  it follows 

that in order for bubbles and non-bubbles to co-exist: 

 ),(~)(~ tvht   (8) 

where ]1ln[v  with .0v  Thus we see from (8) that the bubble 

results in a temporary increase in the rate of return. If we ignore volatility 

fluctuations by setting )(t = ,  then our pre-crash model for an asset price 

becomes: 

 .dd))(~(d tt WttvhX   (9) 

However, this is actually a rather poor empirical model [18], failing 

to adequately account for the volatility fluctuations in (3). Under a 

Markowitz interpretation, means represent returns and variances/standard 

deviations represent risk. Suppose that in (3) )(t  adapts in an analogous 

way to )(t  so as to compensate a representative investor for bearing 

additional levels of risk. The instantaneous variance associated with (3) is: 

 ).()( 22 thvt   (10) 

For (6) the instantaneous variance is .2  Setting (10) equal to ,2  the 

second-order condition for the co-existence of bubbles and non-bubbles 

becomes: 

 ).()( 222 thvt   (11) 
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(11) illustrates an illusion of certainty – a decrease in the volatility 

function – which arises as part of the bubble process. Intuitively, in order 

for a bubble to occur not only must returns increase but the volatility must 

also decrease. If this does not happen (6) with an instantaneous variance of 
2  would represent a more attractive and less risky investment than a 

market described by (9) and bubbles could not occur. Moreover, as (11) 

goes to zero, a crash is explicitly tied to a phase transition from random to 

deterministic behaviour in prices. We use (6) as a model of a 

“fundamental” or purely stochastic regime, as in Black-Scholes theory. 

From (11), our model for prices under a bubble regime becomes: 

 .d)(d)](~[d 22
tt WthvttvhX   (12) 

The simplest h(t) considered in [3] is: 

 ,)()( ttBth c   (13) 

where it is assumed that )1,0( and tc is a critical time when the hazard 

function becomes singular by analogy with phase transitions in statistical 

mechanical systems [19]. Here, we choose on purely statistical grounds: 

 .)(
1

t

t
th   (14) 

This hazard function corresponds to a log-logistic distribution and is 

intended to capture the essence of the previous approach as the hazard 

function has both a relatively simple form and, for ,1  has a non-trivial 

mode at ,)1( /1t  with modal point ./)1( /11  For these reasons, 

the log-logistic distribution is commonly used in statistics [20]. The log-

logistic distribution has probability density: 

 
2

1

)(
)(

x

x
xf ,  (15)  

on the positive half-line. The cumulative distribution function is: 

 .1)(
x

xF   (16) 

The model (12) with h(t) given by (14) has the solution: 
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 From (17) the conditional densities can be written as: 

 ),,(~| 2
|| ststst NXX   (18) 

where: 

 ,ln)(~
|

s

t
vstX sst   (19) 

and: 

 .ln)( 222
|

s

t
vstst   (20)  

Under the fundamental equation (6) these expressions are simply 

)(~
| stX sst  and ).(22

| stst  Thus, we see that under the 

bubble model the incremental distributions demonstrate a richer behaviour 

over time. 

The fundamental or purely stochastic non-bubble model (6) 

corresponds to the case that ,0  or equivalently that v= 0. We can test 

for bubbles by testing the null hypothesis v= 0 (no bubble) against the 

alternative hypothesis v>0 (bubble). This can be simply done using a (one-

sided) t-test since maximum likelihood estimates, and estimated standard 

errors, can be easily calculated numerically from (19). A range of further 

implications of our bubble model can be derived as we describe below. 

Crash-size distribution. Suppose that prices are observed up to and 

including time t and that a crash has not occurred by time t. The crash-size 

distribution resists an analytical description but a Monte Carlo algorithm to 

simulate the crash-size C is straightforward and reads as follows: 

1. Generate u from U ~Log-logistic ),(  with the constraint .tu  

2. C~ ,Ze  

where: 

 .ln)(,ln)(~ 22

t

u
vtu

t

u
vtuXNZ t   (21) 

We note that simulating u from the log-logistic distribution is 

straight-forward and from (16) possible via inversion using: 
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Post-crash increase in volatility. Before a crash equation (17) applies 

and the volatility is given by: 

 
t

tv
t

12
22 )( .  (22) 

After a crash, the volatility reverts to its fundamental level .2  

Equation (22) thus predicts a post-crash increase in volatility according to: 

 .)(
12

2

t

tv
t   (23)  

For =1 (23) corresponds to the model of post-crash volatility decay 

in [21].  

Fundamental values. The above model suggests a simple approach to 

estimate fundamental value. Under the fundamental dynamics (6): 

 ,)0())((:)( t
F ePtPEtP   (24) 

and we use (24) to estimate fundamental value in our empirical application 

in Section 3. This approach recreates the widespread phenomenology of 

approximate exponential growth in economic time series (see e.g. Chapter 

7 in [22]). 

Estimated bubble component. Define: 

 

t
t

uuhtH
0

1lnd)()( .  (25) 

Under the fundamental model E(P(t)) is given by (24). Under the 

bubble model, since Xt= log(P(t)) satisfies: 

 )),(),(~(~ 22
0 tHvttvHtXNX t   (26) 

it follows that: 

 .)0())((:)(
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2

2
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v
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B ePtPEtP   (27) 

Thus we can estimate the proportion of observed prices which can be 

attributed to a speculative bubble as the weighted average: 

  .d1
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3. Heavy-tailed models via the NIG distribution 

In this section we improve the model in Section 2 by moving the 

underlying assumptions of the model closer to observed properties of 

empirical financial asset returns. Distributional aspects of financial asset 

returns depend critically on the frequency over which returns are 

calculated. Approximately Gaussian behaviour is a reasonable assumption 

for returns calculated over periods of about 16 trading days or longer, e.g. 

monthly returns [23]. The Gaussian model of Section 2 was successfully 

used to model bubbles in low-frequency monthly data in [24]. For daily 

returns distributions such as the Normal Inverse Gaussian (NIG) distri-

bution provide a better fit to empirical data [23]. The NIG distribution has 

also been successfully used to model intra-daily data [25]. 

We thus seek to build a more flexible model for financial bubbles using 

the Gaussian model in Section 2 as a stepping stone. More realistic distri-

butional assumptions should lead to a more sensitive text for bubbles once 

the model is applied to empirical financial data [18]. The layout of this 

section is as follows. In Section 3.1 we introduce a revised model for 

purely random or fundamental behaviour in prices. Sections 3.2-3.3 present 

our revised model for financial bubbles. 

3.1. Purely stochastic or fundamental model 

As a model for fundamental or purely stochastic behaviour in prices we 

choose the equation: 

 ,d)(d)()(d tWtPUttPtP  (29) 

where U is an unobserved random variable with an IG(1,1/K) distribution 

(see the Appendix), which has mean 1 and is independent of the Wiener 

process Wt. This formulation retains the tractability of Gaussian stochastic 

calculus [26] but enables one to generate heavy-tailed non-Gaussian 

behaviour inline with stylized empirical facts of financial-return data [14], 

Chapter 7. Related ways of generating financial models with heavy tails 

are discussed in [14], Chapters 4 and 5. The models in this section are 

based around the Normal Inverse Gaussian (NIG) distribution [27-28]. See 

the Appendix for the definition and for some additional facts about this 

probability distribution. 
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From (29) it follows that the log-price Xt evolves according to:  

 tt WUt
U

X dd
2

d
2

.  (30) 

From Result 1 in the Appendix it follows that: 
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Similarly, the incremental distributions are given by: 
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1
,

4

11
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2
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We have that: 
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1
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2
2 K
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XXE tt ,  (33) 

and 

4
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)(]var[
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3
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3

2

K
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K
XX tt  

 ).(
4

11 2

2

24 o
K

K   (34) 

Hence from (33-34) it follows, as in the Gaussian case, that under the 

fundamental or purely stochastic regime Xt has instantaneous mean or drift 

given by 2/2  and instantaneous variance given by .2  

As was the case with the Gaussian model in Section 2 this simple 

NIG model also suggests a simple approach to estimating fundamental 

value. It follows from (31) and Result 2 in the Appendix that: 

 
ttX

F ePetPEtP )0())((:)( 0 .  (35) 

3.2. Leptokurtic bubble model 

We formulate a heavy-tailed extension of the Gaussian bubble model 

in Section 2 as follows. We retain (1) but replace the relationship (2) with 

the equation: 

 .d)()(d)()()(d 111 tWtPUtttPttP   (36) 
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As before, we have that prior to a crash P(t)=P1(t) and from (36) that 

Xt= log(P1(t)) satisfies: 

 )(d1lnd)(d
2

)(
d

2

tjWUtt
Ut

X tt .  (37) 

Under the bubble model (37) we have that: 

 ).()(1ln
2

)(
)(|

2

othU
t

tUXXE tt  (38) 

Therefore: 
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Similarly, we see that: 

,|var|var UXXEUXXEXXVar tttttt  

),(
2

var)()(
2

222 o
U

thvUtEXXVar tt  

 ).()()( 22 othvtXXVar tt  (40) 

Hence, it follows that under the bubble model the instantaneous mean 

is )(2/)()( 2 tvhtt and the instantaneous variance is )()( 22 thvt . 

The mean-variance conditions for the co-existence of bubbles and non-

bubbles become: 

 ),(),()( 22222 thvthvt   (41) 

and 

 )(
2

)(),(
2

)(
)(

2

222

th
v

vttvh
t

t .  (42) 



 46 

3.3. Statistical properties of the bubble model 

The bubble model in (36) has the following construction: 

,
1

,1~ IGU  

 UtHvt
UtHvt
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It follows from (44) and Result 1 in the Appendix that Xt is NIG 

distributed with parameters: 
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where H(t) is given by (25). Similar reasoning shows that the conditional 

distribution of Xu given Xt )( tu  is also NIG distributed with parameters 

given by: 
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Crash-size distribution. Suppose that prices are observed up to and 

including time t and that a crash has not occurred by time t. The crash-size 

distribution resists an analytical description but a Monte Carlo algorithm to 

simulate the crash-size C is straightforward and reads as follows: 
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1. Generate u from U~Log-logistic ( , )  with the constraint .tu  

2. ,~ ZeC  where Z is NIG distributed with parameters given by (45). 

Estimated bubble component. Under the fundamental model E(P(t)) is 

given by (35). Under the bubble model it follows from (45) and Result 2 in 

the Appendix that: 
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2

2

e)0())((:)(

tH
v

vt

B PtPEtP .  (46) 

Continuing, we see that the estimated bubble component can be 

formulated in exactly the same way as in equation (28). 

4. Empirical application 

As an empirical application we look at daily prices of the FTSE 100 

from March 2nd 2009 to October 29th 2010 to try and determine whether or 

not the Bank of England's policy of quantitative easing has coincided with, 

and possibly led to, a speculative bubble in the London Stock Exchange. 

As shown in Figure 1, even with such a relatively short data set, there 

appears to be some merit in using a heavy-tailed non-Gaussian model with 

the asymmetric NIG model offering a better fit than the normal distribution 

to the right tail of the empirical distribution of the log-returns. 

Testing the null hypothesis of no bubble is a test of the hypothesis 

v = 0. This can be tested using a one-sided t-test – dividing the estimate v̂  

by its estimated standard error and comparing to a normal distribution. For 

this data set we obtain a t-statistic of 3.332 and a p-value of 0.000, giving 

strong evidence of a bubble. A plot of observed prices compared to 

estimated fundamental values is shown in Figure 2. Some degree of over-

pricing is apparent although prices appear to have moved closer to 

estimates of fundamental value over the second half of 2010. In contrast, 

however, calculating the estimated bubble component in equation (28) is 

only estimated to be 0.006, suggesting that the speculative bubble compo-

nent accounts for a relatively trivial amount, roughly 0.6%, of the observed 

prices. 

In summary, the statistical test and the plot shown in Figure 2 give 

enough evidence to point to a bubble and to some level of over-pricing in 

the FTSE 100. However, the level of over-pricing does not seem 

particularly large and prices appear to have moved closer to estimated 

fundamental values over the second half of 2010. The level of over-pricing 

also seems much less than the recent UK housing bubble where a similar 
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approach suggested that the speculative bubble component accounted for 

around 20% of the observed prices [24]. 
 

 
Figure 1. Distribution of log-returns. Plot of log kernel density estimate (solid line) 

together with best fits from a normal distribution (dashed line). And asymmetric NID 

distribution with   =1/2 (dots). 

 
Figure 2. Plot of observed prices (solid line) together with estimated fundamental 

value (dashed line). 

x 
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5. Conclusions 

This paper builds on the now well-established analogy between 

financial crashes and phase transitions in critical phenomena. In a 

stochastic version of the original model of [3] crashes are seen to represent 

a phase transition from random to deterministic behaviour in prices. Crash 

precursors are a super-exponential growth accompanied by an “illusion of 

certainty”, characterised by a decrease in the volatility function prior to the 

crash. A Gaussian model is introduced and then further extended to 

incorporate a heavy-tailed version of the model based around the NIG 

distribution. Under both settings a range of potential applications to 

economics were discussed. These include statistical tests for bubbles, 

crash-size distributions, predictions of a post-crash increase in volatility  

– related to Omori-style power laws in complex systems – and simple 

estimates of fundamental-value and speculative-bubble components. As an 

empirical application we test for whether a bubble is present in the FTSE 

100 following the introduction of the Bank of England's policy of quan-

titative easing. Some evidence of a bubble and subsequent over-pricing is 

found. However, the level of over-pricing does not appear very large  

– particularly in comparison to the recent UK housing bubble – and prices 

appear to have converged towards estimated fundamental values during the 

latter half of 2010. 
 

Probability Appendix 
 

Definition 1. The inverse Gamma distribution IG  is the proba-

bility distribution on [0, )  with parameters  and  and probability 

density function given by: 
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The mean is equal to and the variance is equal to ./3  

Definition 2. The normal inverse Gaussian distribution is the proba-

bility density on (– , )  with parameters ,,,  with .||  Define 

.22  The NIG distribution has probability density function given by: 
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where K1 denotes the modified Bessel function of the second kind with the 

integral representation:  

 .d
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The mean of the NIG distribution given by (48) is:  

 ,   (50) 

and the variance is: 

 .
3

2

  (51) 

Further, from (48), the moment generating function of the NIG 

distribution, MX(t):=E[exp{tX}], is given by: 

 .)( ))(( 2tt
X etM   (52) 

Result 1 [Mixture representation of the NIG distribution]. Suppo-

se that X and U are random variables obeying the following construction: 
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Then the marginal distribution of X is ),,,(NIG where: 
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Proof: Write the probability distribution )(xf X  of X as: 
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It follows that: 
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The full result follows from the identity, see e.g. the appendix in [14]: 

 ).(2d1
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22
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Result 2. Suppose that X is NIG distributed with parameters given by 

(55). Then it follows that: 

 .)( eeE X   (59) 

Proof: It follows from (53) that: 

 eeeeeE X )()4/1())12/1(( 222

)( .  (60) 
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